Assignment 2: This assignment counts for 10% of the assessment\(^1\) for 3P2 in 2005. Solutions are due by 4pm on Tuesday May 3, 2005.

1. Let \(Z \equiv \{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^3 = 0 \} \). Prove that \(Z \) is not a smooth manifold. What about \(Z_{\pm} \equiv \{ (x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^3 = \pm 0.01 \} \)?

2. Give an example of a subset \(Z \) of some \(\mathbb{R}^n \), and \(x \in Z \) such that \(T_Z x \) is not a vector subspace of \(\mathbb{R}^n \). Prove that \(T_Z x \) is not a vector subspace of \(\mathbb{R}^n \).

3. Show that stereographic projection \(\phi_+: S^n \to \mathbb{R}^n \) from the north pole \((0,0,\ldots,1)^{\top} \in \mathbb{R}^{n+1}\) is a diffeomorphism, for any integer \(n \geq 1 \).

4. Construct an embedding \(f \) of the real projective plane \(\mathbb{R}P^2 \) in \(\mathbb{R}^4 \), and prove that \(f \) is an embedding, namely that \(f \) is continuous and has a continuous inverse defined on its image \(f(\mathbb{R}P^2) \subset \mathbb{R}^4 \).

5. Let \(S^3 \) be the unit sphere in \(\mathbb{R}^4 \), identified with the unit quaternions. For \(q \in S^3 \) and \(r \in \mathbb{R}^4 \) define

\[
\xi(q)r = q.r.q^{-1}
\]

where multiplication and inversion are quaternionic. Prove

(a) \(\xi(q) \in SO(3) \) for all \(q \in S^3 \)
(b) \(\xi(q) = \xi(p) \iff p = \pm q \) where \(p, q \in S^3 \)
(c) \(\xi : S^3 \to SO(3) \) is a group homomorphism with kernel \(\pm (1,0,0,0) \)
(d) \(\xi \) maps onto the whole of \(SO(3) \).

\(^1\)Plagiarism is a serious offence under faculty rules (either copying or permitting it).
1. Prove the second straightening theorem:

Given $C^\infty f : D \to \mathbb{R}^m$, where D is open in \mathbb{R}^n and $n < m$, suppose $df_{x_0} : \mathbb{R}^n \to \mathbb{R}^m$ has rank n. Then there is an open subset U of \mathbb{R}^m containing $y_0 \equiv f(x_0)$ and a C^∞ diffeomorphism F from U onto an open subset V of \mathbb{R}^m with the property that

$$F \circ f(x) = (x_1, x_2, \ldots, x_n, 0, 0, \ldots, 0) \in \mathbb{R}^m.$$