Assignment 2: This assignment counts for 10% of the assessment for 3P2 in 2005. Solutions were due by 4pm on Tuesday May 3, 2005.

1. Let \(Z \equiv \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^3 = 0\} \). Prove that \(Z \) is not a smooth manifold. What about \(Z_\pm \equiv \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^3 = \pm 0.01\} \)?

Solution: Let \(\omega \equiv (\omega_1, \omega_2) : (-\epsilon, \epsilon) \to Z \) be a smooth curve in \(Z \) satisfying \(\omega(0) = (0, 0) \). Then \(\omega_1(t)^2 + \omega_2(t)^3 = 0 \) for all \(t \in (-\epsilon, \epsilon) \). Differentiating,

\[
2\dot{\omega}_1(t)\omega_1(t) + 3\dot{\omega}_2(t)\omega_2(t)^2 = 0
\]

Differentiating again,

\[
2\ddot{\omega}_1(t)\omega_1(t) + 2\dot{\omega}_1(t)^2 + 3\ddot{\omega}_2(t)\omega_2(t)^2 + 6\dot{\omega}_2(t)^2\omega_2(t) = 0
\]

and, setting \(t = 0 \), we find \(\dot{\omega}_1(0) = 0 \). Differentiating again, and then setting \(t = 0 \),

\[
0 + 0 + 0 + 0 + 0 + 6\ddot{\omega}(0)^3 = 0
\]

namely \(\ddot{\omega}(0) = 0 \). So \(TZ_{(0,0)} = \{(0,0)\} \). Define \(\mu : \mathbb{R} \to Z \) by \(\mu(t) = (t^3, -t^2) \). Then \(\dot{\mu}(1) = (3, -2) \neq (0,0) \) and so \(TZ_{(1,-1)} \) is at least (exactly) 1-dimensional. So \(Z \) is neither a 0-manifold nor a 1-manifold: it is not a manifold at all.

Define \(f : \mathbb{R}^2 \to \mathbb{R} \) by \(f(x_1, x_2) = x_1^2 + 2x_2^3 \). Then

\[
df_{(x_1,x_2)}(v_1, v_2) = 2x_1 v_1 + 3x_2^2 v_2
\]

and \(df_{(x_1,x_2)} \) is therefore nontrivial except when \(x_1 = x_2 = 0 \). It follows that \(0 = f(0,0) \) is the only critical value of \(f \). So \(Z_\pm = f^{-1}(0.01) \) are smooth \(2-1 = 1 \)-manifolds.

2. Give an example of a subset \(Z \) of some \(\mathbb{R}^n \), and \(x \in Z \) such that \(TZ_x \) is not a vector subspace of \(\mathbb{R}^n \). Prove that \(TZ_x \) is not a vector subspace of \(\mathbb{R}^n \).

Solution: Set \(Z = \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R} \subset \mathbb{R}^2 \), namely

\[
Z = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 = 0\}
\]

If \(\omega : (-\epsilon, \epsilon) \to Z \) is a smooth curve in \(Z \) satisfying \(\omega(0) = (0,0) \) then \(\omega_1(t)\omega_2(t) = 0 \) for all \(t \). Differentiating,

\[
\dot{\omega}_1(t)\omega_2(t) + \omega_1(t)\dot{\omega}_2(t) = 0
\]

Differentiating again,

\[
\ddot{\omega}_1(t)\omega_2(t) + 2\dot{\omega}_1(t)\dot{\omega}_2(t) + \omega_1(t)\ddot{\omega}_2(t) = 0
\]

and setting \(t = 0 \) we find \(\dot{\omega}_1(0)\omega_2(0) = 0 \). So \(TZ_{(0,0)} \subseteq Z \). Considering the curves \(t \mapsto (t,0) \) and \(t \mapsto (0,t) \) we see \(TZ_{(0,0)} = Z \). However \(Z \) is not closed under vector addition.
3. Show that stereographic projection \(\phi_+ : S^n \to \mathbb{R}^n \) from the north pole \((0,0,\ldots,1) \in \mathbb{R}^{n+1}\) is a diffeomorphism, for any integer \(n \geq 1 \).

Solution: We find
\[
\phi_+(x) = \frac{(x_1, x_2, \ldots, x_n)}{1 - x_{n+1}}
\]
where \(x \in S^n - \{(0,0,\ldots,1)\} \), and
\[
\phi_+^{-1}(y) = \left(\frac{2y, \|y\|^2 - 1}{\|y\|^2 + 1}\right)
\]
where \(y \in \mathbb{R}^n \). \(\phi_+^{-1} \) is smooth because it is a rational function whose denominator never vanishes. \(\phi_+ \) is smooth because it extends to the open subset \(\mathbb{R}^{n+1} - \mathbb{R}^n \times \{1\} \) of \(\mathbb{R}^n \) (the pre-image by the (linear) projection to the \(n+1 \)th coordinate of the open subset \(\mathbb{R} - \{1\} \) of \(\mathbb{R} \)).

4. Construct an embedding \(f \) of the real projective plane \(\mathbb{R}P^2 \) in \(\mathbb{R}^4 \), and prove that \(f \) is an embedding, namely that \(f \) is continuous and has a continuous inverse defined on its image \(f(\mathbb{R}P^2) \subset \mathbb{R}^4 \).

Solution: Let \(\pi : S^2 \to \mathbb{R}P^2 \) be the canonical projection of the equivalence relation given by \(x \cong -x \) for \(x \in S^2 \). Defining \(g : S^2 \to \mathbb{R}^4 \) by
\[
g(x) = (x^2_1, x^2_2 + x_1x_3, x_1x_2, x_2x_3)
\]
we have \(g(x) = g(-x) \). So there is a unique map \(f : \mathbb{R}P^2 \to \mathbb{R}^4 \) satisfying \(g = f \circ \pi \). Since \(g \) is continuous (polynomial), \(f \) is continuous (defining property of the quotient topology).

Since \(S^2 \) is closed (preimage of \(\{1\} \) under \(x \mapsto \|x\|^2 \)) and bounded (definition of boundedness), \(S^2 \) is compact (Heine-Borel Theorem). Since \(\pi \) is continuous, \(\pi(S^2) = \mathbb{R}P^2 \) is also compact. Since \(\mathbb{R}^4 \) is a metric space so is \(f(\mathbb{R}P^2) \) with the subspace topology, and therefore \(f(\mathbb{R}P^2) \) is Hausdorff. So it suffices (Lemma in lectures) to prove that \(f \) is one-to-one, namely that \(g(x) = g(y) \Rightarrow x = \pm y \).

Let \(g(x) = g(y) \), and suppose first that \(x_1 = 0 \). Then \(y_1 = 0 \) and \(x^2_2 = y^2_2 \). If \(x_2 = 0 \) then \(y_2 = 0 \) and \(x = (0,0,\pm1) = y \). If \(x_2 \neq 0 \) then at least \(x_2 = \sigma y_2 \) where \(\sigma = \pm 1 \). Since \(x_2x_3 = y_2y_3 \) and \(x_2 \neq 0 \neq y_2 \) we then have \(x_3 = \sigma y_3 \) and \(x = (0,x_2,x_3) \), \(y = (0,\sigma x_2,\sigma x_3) = \sigma x \).

If, alternatively, \(x_1 \neq 0 \) then \(x_1 = \sigma y_1 \) where \(\sigma = \pm 1 \). Since \(x_1x_2 = y_1y_2 \) we then have \(x_2 = \sigma y_2 \). Since \(x_2x_3 = y_2y_3 \) we have \(x_3 = \sigma y_3 \). So \(x = \sigma y \).

5. Let \(S^3 \) be the unit sphere in \(\mathbb{R}^4 \), identified with the unit quaternions. For \(q \in S^3 \) and \(r \in \mathbb{R}^4 \) define
\[
\xi(q)r = q.r.q^{-1}
\]
where multiplication and inversion are quaternionic. Prove
(a) \(\xi(q) \in SO(3) \) for all \(q \in S^3 \)

Solution: Evidently \(\|q\|^2 = q\bar{q} \), for any quaternion \(q \). So

\[
\|qr\|^2 = qr\bar{q} = q\|r\|^2\bar{q} = q\bar{q}\|r\|^2 = \|q\|^2\|r\|^2
\]

and \(\|qr\| = \|q\|\|r\| \). So

\[
\|\xi(q)\| = \|qr\|\|\bar{q}\| = \|q\|\|r\|\|r\| = \|r\|
\]

since \(q \) is a unit quaternion. Now \(\xi(q) \) is linear in \(r \) and preserves lengths. So \(\xi(q) \in O(3) \). To prove \(\xi(q) \in SO(3) \) it suffices to show \(\det \xi(q) = 1 \).

But \(\det \circ \xi : S^3 \to \{\pm 1\} \subset \mathbb{R} \) is continuous (restriction of a polynomial map on \(\mathbb{R}^4 \)) and \(S^3 \) is path-connected (use great-circle arcs). So \(\det \circ \xi(S^3) \) is path-connected. The nonempty path-connected subsets of \(\{\pm 1\} \) are \(\{1\} \) and \(\{-1\} \) (exclude \(\{\pm 1\} \) by a continuity-supremum argument), and so \(\det \circ \xi \) is constant. Since \(\det \circ \xi(1) = 1 \), \(\det \circ \xi \) is identically 1 and \(\xi(q) \in SO(3) \) for all \(q \in S^3 \).

(b) \(\xi(q) = \xi(p) \iff p = \pm q \) where \(p, q \in S^3 \)

Solution: Because \(\xi(q) \) is homogeneous and quadratic in the components of \(q \),

\(\xi(q) = \xi(-q) \). Conversely, if \(\xi(q) = \xi(p) \) then \(\xi(s) = 1_{\mathbb{R}^3} \) where \(s \equiv qp^{-1} = q\bar{p} \), because \(\xi \) is a homomorphism (part c). So it suffices to show that the kernel of \(\xi \) is \(\{\pm 1\} \) (part c).

(c) \(\xi : S^3 \to SO(3) \) is a group homomorphism with kernel \(\pm(1, 0, 0, 0) \)

Solution: For any \(u, v \in S^3 \) and \(r \in \mathbb{R}^3 \), \(\xi(uv)r = uv\bar{v}\bar{u} = \xi(u)(v\bar{v}) = \xi(u)\circ \xi(v)(r) \). So \(\xi(uv) = \xi(u)\circ \xi(v) \), namely \(\xi \) is a homomorphism.

If \(\xi(s) = 1_{\mathbb{R}^3} \) for any \(s \in S^3 \) then we have \(sr\bar{s} = r \) for all pure imaginary quaternions \(r \). Let \(s = s_R + s_I \) where \(s_R \) and \(s_I \) are real and imaginary respectively. Let \(r \) be a unit vector orthogonal to \(s_I \). Since \(r \) anticommutes with \(s_I \)

\[
sr\bar{s} = (s_R + s_I)r(s_R - s_I) = (s_R^2 + 2s_Rs_I + s_I^2)r = (1 + 2s_Rs_I)r
\]

Because \(s \) is a unit quaternion the right hand side \((r) \) is equal to \((s_R^2 - s_I^2)r \) and so

\[
s_R^2 + 2s_Rs_I + s_I^2 = s_R^2 - s_I^2
\]

Then \(2s_Rs_I = 2s_I^2 \) and if \(s_I \neq 0 \) we have \(s_I = s_R \) (impossible). So \(s_I = 0 \) and \(s \) is real. Then \(s = \pm 1 \), since \(s \) is a unit quaternion.

(d) \(\xi \) maps onto the whole of \(SO(3) \).

Solution: The characteristic polynomial \(p \) of any \(A \in SO(3) \) is cubic and has real coefficients. Its roots are the eigenvalues of \(A \) (complex numbers of length 1) and are either real or occur in complex conjugate pairs, since \(p \) has real coefficients.

If \(p \) has a complex root \(\lambda, \bar{\lambda} \) is another root, and the remaining root must therefore be \(\pm 1 \). Since \(\det A \) is the product of the eigenvalues, and \(\lambda\bar{\lambda} = 1 \) the remaining eigenvalue is 1.
If all the roots of p are real they must be ± 1, and they cannot all be -1 since then $\det A = -1$. So again 1 is an eigenvalue of A.

So in any case, A fixes some unit vector w in \mathbb{R}^3, namely A is a rotation in the plane P orthogonal to w.

Fix unit vectors $u, v \in P$ so that $\{u, v, w\}$ is a positively oriented orthonormal basis of \mathbb{R}^3. For $\theta \in \mathbb{R}$ set $q = \cos \theta + w \sin \theta$. Then

$$\xi(q)u = (\cos \theta + w \sin \theta)u(\cos \theta - w \sin \theta) = u(\cos^2 \theta - \sin^2 \theta) + 2v \sin \theta \cos \theta$$

since u, w anticommute and $wu = v$. Similarly

$$\xi(q)(v) = (\cos \theta + w \sin \theta)v(\cos \theta - w \sin \theta) = -2u \sin \theta \cos \theta + v(\cos^2 \theta - \sin^2 \theta)$$

So $\xi(q)$ is rotation in the plane P from u towards v by an angle -2θ. Choosing θ appropriately, $\xi(q) = A$.

1. Prove the second straightening theorem:

Given $C^\infty f : D \to \mathbb{R}^m$, where D is open in \mathbb{R}^n and $n < m$, suppose $df_{x_0} : \mathbb{R}^n \to \mathbb{R}^m$ has rank n. Then there is an open subset U of \mathbb{R}^m containing $y_0 \equiv f(x_0)$ and a C^∞ diffeomorphism F from U onto an open subset V of \mathbb{R}^m with the property that

$$F \circ f(x) = (x_1, x_2, \ldots, x_n, 0, 0, \ldots, 0) \in \mathbb{R}^m.$$