1. Let $\mathbb{Z}_n = \{0, \ldots, n-1\}$, and let e be a non-zero element of \mathbb{Z}_n.

 (a) Show that if $\gcd(e, n) = 1$, then there exists a unique element d of \mathbb{Z}_n with
 $ed \equiv 1 \pmod{n}$. (The element d is called the multiplicative inverse of e in \mathbb{Z}_n.)

 (b) Conversely, show that if e has a multiplicative inverse in \mathbb{Z}_n, then $\gcd(e, n) = 1$.

 Hint: use the fact (from Workshop 1) that $\gcd(e, n) = 1$ if and only if the function $f : \mathbb{Z}_n \rightarrow \mathbb{Z}_n$ given by $f : a \mapsto ea$ is one-to-one.

2. (a) Show that 2 is a primitive element of \mathbb{Z}_{11}.

(b) Let f be the function from \mathbb{Z}_{31} to \mathbb{Z}_{31} given by

 $$f : x \mapsto 3^x \pmod{31}$$

 (where 3 is a primitive element of \mathbb{Z}_{31}).

 i. Evaluate $f(5)$.

 ii. Find x given that $f(x) = 4$.

(c) Let f be the function from \mathbb{Z}_{73} to \mathbb{Z}_{73} given by

 $$f : x \mapsto 5^x \pmod{73}$$

 (where 5 is a primitive element of \mathbb{Z}_{73}). EITHER

 i. evaluate $f(7)$, OR

 ii. find x given that $f(x) = 19$.

 (The two choices are worth the same number of marks.)
3. Let C be the binary $(4,2)$-code $\{0000, 1011, 0110, 1101\}$.

(a) Find a parity check matrix H for C.
(b) Construct a standard array for C.
(c) Give a table of coset leaders and their syndromes for C.
(d) Use syndrome decoding to decode

i. 1111
ii. 0111
iii. 1110

4. Let C be the ternary code with parity check matrix

$$H = \begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 2 & 0 & 1 \\
1 & 2 & 0 & 1
\end{pmatrix}.$$

Give a table of coset leaders and their syndromes for C. Use syndrome decoding to decode

(a) 0110
(b) 2222
(c) 2012

5. **Bonus Question**

Is there a self-dual ternary $(6,3)$-code? If so, give an example. If not, give a proof.