1. Let \(a, b \in \mathbb{Z}_n \) and define a function \(e : \mathbb{Z}_n \rightarrow \mathbb{Z}_n \) by \(e(x) = ax + b \).

(a) Show that if \(\gcd(a, n) \neq 1 \) then \(e \) is not one-to-one.

Assume that \(\gcd(a, n) = d > 1 \). We want to show that there exist two different elements of \(\mathbb{Z}_n \) which are mapped by \(e \) to the same element. As an educated guess, choose \(x_1 = 0 \) and \(x_2 = n/d \). Since \(0 < n/d < n \), \(x_2 \) is not congruent to \(0 \) \((\text{mod} \ n)\), and so \(x_1 \neq x_2 \). Now \(ax_1 + b \equiv b \) \((\text{mod} \ n)\) and \(ax_2 + b \equiv a \frac{n}{d} + b \equiv \frac{a}{d}n + b \equiv b \) \((\text{mod} \ n)\). So \(e(x_1) = e(x_2) \), and hence \(e \) is not one-to-one.

(b) Show that if \(\gcd(a, n) = 1 \) then \(e \) is one-to-one.

Assume that \(\gcd(a, n) = 1 \) and that \(e(x_1) = e(x_2) \) for some \(x_1, x_2 \in \mathbb{Z}_n \). Then \(ax_1 + b \equiv ax_2 + b \) \((\text{mod} \ n)\) which implies that \(a(x_1 - x_2) \equiv 0 \) \((\text{mod} \ n)\). Since \(\gcd(a, n) = 1 \) we can divide both sides of the congruence by \(a \), giving \((x_1 - x_2) \equiv 0 \) \((\text{mod} \ n)\). Hence \(x_1 = x_2 \) and \(e \) is one-to-one.

This shows that an affine cipher (with \(n = 26 \)) is one-to-one if and only if \(\gcd(a, 26) = 1 \) (which is true if and only if \(a \) is odd and not 13).

2. Encrypt

‘So you thought you had seen the back of permutations forever after 3P5 did you?’

using a permutation cipher with key

\[
\pi = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 6 & 5 & 3 & 2 & 8 & 7 & 1
\end{pmatrix}.
\]

Write out the first block of 8 letter with the permutation underneath, and move the \(i^{th} \) letter to the \(\pi(i)^{th} \) position, (ie move the 1st letter to the 4th position, the 2nd to the 6th and so on) as follows:
Then do the same for the remaining blocks of 8 letters, and join together to get the ciphertext.

What is the decryption key?

The inverse permutation $\pi^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 5 & 4 & 1 & 3 & 2 & 7 & 6 \end{pmatrix}$.

3. A Hill cipher has key an $n \times n$ matrix M with entries in \mathbb{Z}_{26}. Encryption is done by converting the message string to integers in \mathbb{Z}_{26} in the usual way, and then breaking the message into strings of length n. For each string $x = (x_1, \ldots, x_n)$ we then find the product xM, and convert the result back into letters.

(a) Use

$$M = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 21 \\ 15 & 0 & 0 \end{pmatrix}$$

to encrypt ‘artichoke’.

(Note that all multiplication is done mod 26.) The message ‘artichoke’ as integers in \mathbb{Z}_{26} is $0 \ 17 \ 19 \ 8 \ 2 \ 7 \ 14 \ 10 \ 4$. Multiplying the first string of length 3 by M gives

$$(0,17,19).M = (285,0,359) \equiv (25,0,19) \pmod{26}.$$

Continuing in the way we obtain the string $25 \ 0 \ 19 \ 1 \ 24 \ 16 \ 8 \ 16 \ 2$ which yields the ciphertext ZATBYQIQC.

(b) Prove that $\begin{pmatrix} 0 & 0 & 7 \\ 9 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix}$ is the decryption key.

To decrypt after encrypting with M, we multiply by M^{-1}; ie we use the fact that $xMM^{-1} = x$. So we show that $\begin{pmatrix} 0 & 0 & 7 \\ 9 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix} = M^{-1}$.

$$\begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 21 \\ 15 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 7 \\ 9 & 0 & 0 \\ 0 & 5 & 0 \end{pmatrix} = \begin{pmatrix} 105 & 0 & 0 \\ 0 & 27 & 0 \\ 0 & 0 & 105 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \pmod{26}.$$
(c) Is \[
\begin{pmatrix}
3 & 0 & 1 \\
9 & 5 & 7 \\
17 & 1 & 3
\end{pmatrix}
\] a valid key for a Hill cipher? (why or why not?)

No it isn’t, because the determinant is 0 and hence there is no decryption key. (Note that having non-zero determinant is necessary but not sufficient for a matrix A over \mathbb{Z}_{26} to be a valid key for a Hill cipher. A necessary and sufficient condition is that $\gcd(26, \det(A)) = 1$.)