1. Let

\[C = \{0, 10, 111, 1101, 11000, 11011\}. \]

Show that \(C \) is instantaneous.

Given a source \(S \) with message alphabet \(M = \{a, b, c, d, e, f\} \) and probability distribution

\[
P(S = a) = \frac{1}{8}, P(S = b) = \frac{1}{32}, P(S = c) = \frac{1}{16}, \]

\[
P(S = d) = \frac{1}{2}, P(S = e) = \frac{1}{4}, P(S = f) = \frac{1}{32}, \]

consider the encoding scheme

\[f : M \rightarrow C \]

\[f : a \rightarrow 111, b \rightarrow 11001, c \rightarrow 1101, d \rightarrow 0, e \rightarrow 10, f \rightarrow 11000. \]

What is the average codeword length of \(f \)?

Show that \(f \) achieves the optimal lossless data compression for \(S \).

2. Solve the problems concerning the Adventures of Dakota Smith, at

www.dllab.caltech.edu/cbs175/handouts/hw2.html