Solutions to Assignment 1.

1. The only additive subgroups of \(\mathbb{Z}_{12} \) are

 \[\{0\}, \{0,6\}, \{0,4,8\}, \{0,3,6,9\}, \{0,2,4,6,8,10\}, \mathbb{Z}_{12}, \]

 and each of these is an ideal of \(\mathbb{Z}_{12} \). In fact, they are the principal ideals \((0),(6),(4),(3),(2),(1)\), respectively. Since every ideal of \(\mathbb{Z}_{12} \) is an additive subgroup of \(\mathbb{Z}_{12} \), this accounts for all the ideals.

2. \(S \subseteq R \) by definition, and \(S \neq \emptyset \) since \(0 \in S \). If \(x, y \in S \), then \(a(x-y) = ax - ay = 0 - 0 = 0 \) so \(x-y \in S \), and \(a(xy) = (ax)y = 0y = 0 \) so \(xy \in S \). Hence \(S \) is a subring of \(R \).

 Now assume \(R \) is commutative, and let \(r \in R, x \in S \). Then \(a(rx) = a(xr) = (ax)r = 0r = 0 \), so \(rx \in S \) and \(xr \in S \). Hence \(S \) is an ideal of \(R \).

3. Let \(R, S, T \) be rings and let \(\sigma : R \rightarrow S \), \(\tau : S \rightarrow T \) be ring homomorphisms. If \(a, b \in R \), then \((\tau\sigma)(a + b) = \tau(\sigma(a + b)) = \tau(\sigma(a) + \sigma(b)) = \tau(\sigma(a)) + \tau(\sigma(b)) = (\tau\sigma)(a) + (\tau\sigma)(b) \), so \(\tau\sigma \) preserves addition. Similarly, \(\tau\sigma \) preserves multiplication, so \(\tau\sigma : R \rightarrow T \) is also a ring homomorphism.

4. (a) Let \(x, y \in \mathbb{Z}_5 \). Then \(\sigma(x + y) = 6(x + y) = 6x + 6y = \sigma(x) + \sigma(y) \) and \(\sigma(xy) = 6xy = 36xy = (6x)(6y) = \sigma(x)\sigma(y) \) in \(\mathbb{Z}_{30} \) (this works because \(36 \equiv 6 \pmod{30} \)). Hence \(\sigma \) is a ring homomorphism.

 (b) \(\tau \) is not is a ring homomorphism, since it does not preserve multiplication. For example, \(\tau(1 \times 1) = \tau(1) = 2 \), but \(\tau(1)\tau(1) = 4 \).

5. (a) First we show that \(\varphi \) is well-defined. If \(a + n\mathbb{Z}, b + n\mathbb{Z} \in \mathbb{Z}/n\mathbb{Z} \) and \(a + n\mathbb{Z} = b + n\mathbb{Z} \), then \(a \equiv b \pmod{n} \). Since \(m \mid n \) it follows that \(a \equiv b \pmod{m} \) and hence \(a + m\mathbb{Z} = b + m\mathbb{Z} \), as required.
Also

\[\varphi((a + n\mathbb{Z}) + (b + n\mathbb{Z})) = \varphi((a + b) + n\mathbb{Z}) = (a + b) + m\mathbb{Z} \]
\[= (a + m\mathbb{Z}) + (b + m\mathbb{Z}) = \varphi(a + m\mathbb{Z}) + \varphi(b + m\mathbb{Z}), \]

so \(\varphi \) preserves addition. Similarly, \(\varphi \) preserves multiplication, so \(\varphi \) is a homomorphism.

Now \(a + n\mathbb{Z} \in \ker \varphi \iff \varphi(a + n\mathbb{Z}) = m\mathbb{Z} \iff a + m\mathbb{Z} = m\mathbb{Z} \iff a \in m\mathbb{Z} \iff m \mid a \). This shows us that

\[\ker \varphi = \{a + n\mathbb{Z} \mid m \mid a\} = \{n\mathbb{Z}, m + n\mathbb{Z}, 2m + n\mathbb{Z}, \ldots, (k-1)m + n\mathbb{Z}\}, \]

where \(k \in \mathbb{Z} \) such that \(n = mk \). Clearly, \(\text{im} \ varphi = \mathbb{Z}/m\mathbb{Z} \).

(b) In this case, the map is not well defined unless \(n = m \). If \(n \neq m \) then \(n = mk \) with \(k \in \mathbb{Z} \) and \(k > 1 \). Now \(1 + m\mathbb{Z} = (m+1) + m\mathbb{Z} \).

However, \(\varphi(1 + m\mathbb{Z}) = 1 + n\mathbb{Z} \neq (m+1) + n\mathbb{Z} = \varphi(m+1 + m\mathbb{Z}) \).

6. Let \(\sigma : \mathbb{Z}_5 \to \mathbb{Z}_{30} \) be as in question 11(a). Then \(\sigma(1) = 6 \) is not the identity of \(\mathbb{Z}_{30} \). (But 6 is the identity for the subring \(\text{im} \sigma = \{0, 6, 12, 18, 24\} \) of \(\mathbb{Z}_{30} \) – try it!!)

7. (a) Let \(J = \varphi(I) \). Obviously \(J \subseteq \text{im} \varphi \). As \(0 \in I \) and \(\varphi(0) = 0 \), it follows that \(0 \in J \) and hence \(J \neq \emptyset \). Now suppose \(a, b \in J \). Then there are \(i, j \in I \) such that \(\varphi(i) = a \) and \(\varphi(b) = j \). Hence \(b - a = \varphi(j) - \varphi(i) = \varphi(j - i) \). As \(j - i \in I \) it follows that \(b - a \in J \).

Now suppose \(s \in \text{im} \varphi \) and \(a \in J \). Then there is \(i \in I \) such that \(\varphi(i) = a \) and an \(r \in R \) such that \(\varphi(r) = s \). Hence \(sa = \varphi(r) \varphi(i) = \varphi(r i) \). Since \(I \) is an ideal in \(R \) it follows that \(ri \in I \) and thus \(sa \in J \). Similarly \(as \in J \), so \(J \) is an ideal of \(\text{im} \varphi \).

(b) Clearly \(\varphi^{-1}(I) \subseteq R \). Since \(I \) is an ideal of \(\text{im} \varphi \) it follows that \(0 \in I \). Since \(\varphi(0) = 0 \in I \) we have that \(0 \in \varphi^{-1}(I) \) and thus \(\varphi^{-1}(I) \neq \emptyset \). Now suppose \(a, b \in \varphi^{-1}(I) \). Thus there are \(i, j \in I \) such that \(\varphi(a) = i \) and \(\varphi(b) = j \). Then \(\varphi(b - a) = \varphi(b) - \varphi(a) = j - i \in I \) and therefore \(b - a \in \varphi^{-1}(I) \). Finally suppose \(r \in R \) and \(a \in \varphi^{-1}(I) \). Then there is an \(i \in I \) such that \(\varphi(a) = i \).

As \(\varphi(ra) = \varphi(r) \varphi(a) = \varphi(r)i \in I \) it follows that \(ra \in \varphi^{-1}(I) \). Similarly \(ar \in \varphi^{-1}(I) \), so \(\varphi^{-1}(I) \) is an ideal of \(R \).