Assignment 3.

1. Find all irreducible quadratic polynomials of $\mathbb{Z}_2[x]$.

2. Use your answer in Question 1 to find an irreducible polynomial of degree 4 in $\mathbb{Z}_2[x]$.

3. Explain how your answer in Question 2 can be used to construct a field with 16 elements.

4. Give addition and multiplication tables for a field with 16 elements.

5. Let F be a field with p^2 elements, p an odd prime.

 (a) By the last assignment, F has a subring R which is isomorphic to \mathbb{Z}_p. Show that every element of R is a square in F.

 (b) Deduce that every quadratic polynomial in $R[x]$ has zeros in F.

 (c) Suppose $p(x)$ is an irreducible quadratic polynomial in $R[x]$. Deduce that F is isomorphic to $R/(p(x))$.

 (d) Deduce that any other field with p^2 elements is isomorphic to F.