4 THE NORMAL DISTRIBUTION

4.1 Introduction

A very important continuous distribution. Let the random variable X have a normal distribution with mean μ and variance σ^2. We write $X \sim N(\mu, \sigma^2)$. Note that the variance is given in this description.

Let $Y = aX + b$. Then

$$E(Y) = a\mu + b, \quad \text{Var}(Y) = a^2\sigma^2,$$

and Y also has a normal distribution, $Y \sim N(a\mu + b, a^2\sigma^2)$. In particular, if

$$Z = \frac{X - \mu}{\sigma} \quad (a = \frac{1}{\sigma}, b = -\frac{\mu}{\sigma})$$

then $E(Z) = 0$ and $\text{Var}(Z) = 1$, so $Z \sim N(0, 1)$. We call Z the standard normal distribution.

If $Z \sim N(0, 1)$ and $X = aZ + b$, then $X \sim N(a\mu + b, a^2)$.

Probability density functions of $N(\mu, \sigma^2)$ for different means and variances.
Tables list values for the standard normal distribution. Note: Exam tables will be the same as that in the text book, and a copy is available on line.
For $X \sim N(\mu, \sigma^2)$ there are usually two types of problems:

(i) Given an interval for X find the probability;

(ii) Given a probability, find the value(s) of X (the inverse problem).

Example 1. Let $Z \sim N(0, 1)$. find

(i) $P(Z < 1.0)$,

(ii) $P(Z < -1.0)$,

(iii) $P(Z > 1.0)$,

(iv) $P(Z < 2.51)$,

(v) $P(|Z| < 1.96)$,

(vi) z such that $P(Z < z) = 0.9505$,

(vii) z such that $P(|Z| < z) = 0.95$,

(viii) $P(-1.5 < Z < 2.7)$.

Solution
Example 2. Let $X \sim N(5, 16)$. Find

(i) $P(X < 0)$,

(ii) $P(X > 10)$,

(iii) $P(-5 \leq X \leq 7)$,

(iv) c such that $P(|X - \mu| < c) = 0.95$.

Solution
Example 3. Let $X \sim N(\mu, 0.25)$, and suppose $P(X < 5.1) = 0.9772$. Find μ.

Solution
4.2 SUM OF NORMAL RANDOM VARIABLES

Let $X \sim N(\mu_X, \sigma^2_X)$, $Y \sim N(\mu_Y, \sigma^2_Y)$, and put $W = X \pm Y$. Then $W \sim N(\mu_W, \sigma^2_W)$, where

\[
\mu_W = \mu_X \pm \mu_Y \\
\text{and } \sigma^2_W = \text{Var}(X \pm Y) = \text{Var}(X) + \text{Var}(Y) \pm 2 \text{Cov}(X,Y).
\]

If X and Y are independent, then $\text{Cov}(X,Y) = 0$, so

\[
\mu_W = \mu_X \pm \mu_Y \\
\text{and } \sigma^2_W = \sigma^2_X + \sigma^2_Y.
\]

This result can be extended to a sum of several normal random variables.

Result

Let X_1, X_2, \cdots, X_n be independent normal random variables with mean $\mathbb{E}(X_i) = \mu_i$ and $\text{Var}(X_i) = \sigma^2_i$, $i = 1, 2, \cdots, n$. Put

\[Y = \sum_{i=1}^{n} X_i.\]

Then $Y \sim N(\mu_Y, \sigma^2_Y)$, where

\[
\mu_Y = \mathbb{E} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \mathbb{E}(X_i) = \sum_{i=1}^{n} \mu_i
\]

and

\[
\sigma^2_Y = \text{Var} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{Var}(X_i) \text{ (Independence)} = \sum_{i=1}^{n} \sigma^2_i.
\]
Example 4. Suppose the income of executives is normally distributed with the incomes of men and women independent of each other. The means and standard deviations (in $10,000) respectively are 20, 2.5 for men and 15, 2.0 for women.

(a) What is the probability that a randomly chosen female executive earns more than a randomly chosen male executive?

(b) Find the probability that an executive couple has a combined income of more than $400,000.

Solution
Example 5. A machine makes washers with hole diameters that are normally distributed, with mean 15.2 mm and variance 0.03 mm2. Another machine makes bolts with diameters that are normally distributed, with mean 15.0 mm and variance 0.01 mm2.

(a) What is the probability that a randomly selected bolt with fit through a randomly selected washer?

(b) What should be the mean diameter of the washer holes if 99% of the bolts are to fit the washers?

Solution
4.3 Normal approximation to the Binomial Distribution

Let $X \sim \text{Bin}(n, p)$. Then $\mu_X = np$, $\sigma_X = \sqrt{np(1-p)} = \sqrt{npq}$, where $q = 1 - p$. Let $Y \sim N(np, np(1-p))$. As n increases, the distribution of X is more closely approximated by that of Y. (See the plots of the pmf and pdf in the textbook.) Thus

$$\frac{X - np}{\sqrt{np(1-p)}} \sim N(0, 1).$$

The approximation is good provided:

1. $n \geq 30$,
2. $np > 5$
3. $n(1-p) > 5$.

Continuity correction further improves the approximation.

Example 6. $X \sim \text{Bin}(100, 0.4)$. Find approximately

(a) $P(X \leq 30)$,
(b) $P(X > 50)$,
(c) $P(X \geq 50)$,
(d) $P(30 \leq X \leq 50)$,
(e) $P(X = 50)$.

Solution
Exercise
Find the exact values for the above example from Excel.
[(a) 0.0248, (b) 0.0168, (c) 0.0281, (d) 0.932-0.0148=0.9684, (e) 0.0103]

Continuity Correction Rule:
\[P(X \leq a) \approx P \left(Z \leq \frac{a+0.5-\mu}{\sigma} \right) \]
We can always write the required probability as \(P(X \leq a) \).

Exercise

©Nazim Khan, 2007