Spoken Languages Systems: Introduction, Issues and Current Research

Roberto Togneri
CIIPS (SIP Lab)
EE&C Eng, UWA
Overview

- Schematic of Spoken Language System (SLS)
- Introduction to SLS
 - Feature extraction
 - Acoustic Modelling
 - Language Modelling and Understanding
- Issue of Robustness
 - Hidden Dynamic Model
 - Robust Signal Processing
 - Current status
- Concluding Remarks
Schematic of SLS

- Training/Estimation (EM algorithm)

- Feature Extraction

- Baum-Welch

- Acoustic Model

E-step

M-step
Schematic of SLS

- Testing/Decoding (Viterbi algorithm)
Schematic of SLS

- Language Understanding and Processing

ASR Module

NLP Module

TTS Module

Information Retrieval

Response Display

N-best list

semantic frames
Feature Extraction

What is feature extraction?
- Input is acoustic signal, $s(t)$
- Output is a vector of features for each analysis time frame
- Extract features relevant to what is being said
- Ignore features related to speaker and environment

Engineering considerations
- Robustness to noise (environment)

Acoustic-Phonetic considerations
- Unit of speech (i.e. phoneme)
- Co-articulation effects
Acoustic Modelling

- What is acoustic modelling?
 - Input are features
 - Output are models of speech
 - phone, tri-phone, syllable, word

- Engineering considerations
 - Identification of model parameters
 - Uniqueness of model

- Mathematical considerations
 - Statistical estimation and evaluation

- Acoustic-phonetic considerations
 - co-articulatory (i.e. tri-phone models)
Language Modelling

- What is language modelling?
 - Recognition requires a search through all possible word sequence combinations
 - Language model restricts search to most plausible word sequences

- Language considerations
 - For given sequence of words what are the most likely words to follow?
 - For given task or context what are the most likely sequences? (grammar)

- Mathematical considerations
 - Statistical language models (N-gram)
Language Understanding

- What is Language understanding?
 - Unknown utterance has been transcribed into a sequence of words, with possible insertion and deletion errors
 - NLP extracts the “meaning” of a word sequence
 - robust NLU to cope with errors
 - initiates action or response
 - Dialogue management
 - Produces follow-up queries to extract the information needed for the specified task
 - iterations of TTS and ASR
State-of-the-art HMM

- Models time evolution of speech
 - Each state corresponds to quasi-stationary sound (phoneme!)
 - Stochastic nature of transitions model “slow” and “fast” speech dynamics
 - Stochastic nature of state distributions model “noisiness” of acoustic features
Limitations of HMM

- Modelling Limitations
 - Assumes acoustic features are independently generated
 - only true for static voiced sounds
 - continuous speech is never static!
 - State duration and transition likelihoods do not follow that of a Markov model
 - Poor modelling of plosive sounds
 - Data-driven modelling approach
 - Lack of structure implies more models, many parameters and a lot of reliable data to be available
 - CD phones (tri-phones) needed to model effects of co-articulation
Hidden Dynamic Model

- **HDM Fundamental Idea**
 - hidden dynamic based on speech data generation
 - hidden dynamic can represent articulatory or vocal tract resonance (VTR) dynamics
 - context-dependence inherent in the model structure
 - continuity condition of hidden dynamic

- **VTR dynamics**
Hidden Dynamic Model

- Non-linear switched target-directed hidden dynamic state-space model
 \[Z_{k+1} = \Phi_j Z_k + (I - \Phi_j) T_j + w_k \]
 \[O_k = h_j(Z_k) + v_k \]

- \(T \) describes VTR of phone
 - formants in the case of voiced sounds
- \(\Phi \) describes “speaking style” of phone
- \(Z \) is continuous from phone \(j \) to \(j+1 \)
 - inherent context-dependence modelling
- \(h(Z) \) represents a mapping from the VTR dynamic to the observations
Hidden Dynamic Model

What is needed?

- From engineering and mathematics
 - more efficient and reliable estimation and decoding algorithms from the statistics, communications and control engineering literature
 - a more constrained mapping function between hidden dynamics and observable acoustic features, MLP is too general!

- From speech physiology
 - more data on time-constant and target parameter values, different dynamics and parameters

- From acoustic-phonetics
 - more information on time-constant and target parameter values, different dynamics and parameters
Robust Signal Processing

- Speech Signals are subject to noise
 - Additive noise
 - Channel noise (linear filtering)
 - Reverberant noise
 - Stressed Speech

- State-of-the-art feature processing
 - Mel-Frequency Cepstral Features with CMN
 - CMN eliminates channel noise
 - CMN features are decorrelated, and the speaker normalised (speaker pitch can be “liftered” out)
 - CMN features affected non-linearly by added noise
Robust Signal Processing

- State-of-the-art feature processing
 - Array processing (also BSS)
 - Multiple microphones permit speaker localisation
 - Effective against reverberant noise
 - Spectral Subtraction
 - Subtract noise spectrum in the spectral domain
 - Effective against additive noise
- Model adaptation
 - HMM models are adapted to the noisy environment
 - Requires adaptation data
 - Need new adaptation for each different environment
Robust Language Understanding

- Robustness Problems
 - Spontaneous Speech
 - Disfluencies: “uh” “um” “err”
 - Restart: “I want .. err .. I would like”
 - Auto-correction: “I would like to arrive depart Boston”
 - Grammatically Incorrect
 - “departing on eight thirty am”
 - Word errors from ASR module

- Solutions
 - Probabilistic grammars
 - Noise heuristics
Conclusions

- Hot research areas in SLS
 - Robustness to noise
 - Reverberant noise
 - Additive non-stationary noise
 - Advanced Acoustic Modelling
 - Hidden Dynamic Model
 - Need to handle Spontaneous Speech
 - Robust Language Understanding

- Current projects
 - Robust feature extraction
 - Hidden Dynamic Model
 - Robust language modelling / understanding