1. In K be a circle with PQ as diameter. Let C be a circle with centre on K and with PQ tangent to C.

Prove that the other tangents from P and Q are parallel.

Solution. Let O be the centre of C, let the other tangent from P to C touch C at R, let the other tangent from Q to C touch C at S, and let PQ touch C at T.

\[\angle OTQ = \angle OSQ = 90^\circ, \quad (QT \text{ and } ST \text{ are tangents to } C) \]
\[\text{OQ is common} \]
\[OT = OS, \quad \text{(radii of } C) \]
\[\therefore \triangle OTQ \cong \triangle OSQ, \quad \text{by the RHS Rule} \]
\[\therefore \angle TOQ = \angle SOQ \]

Similarly,
\[\triangle OTP \cong \triangle ORP \]
\[\therefore \angle TOP = \angle ROP \]
\[\angle POQ = 90^\circ, \quad \text{since } PQ \text{ is a diameter of } K \text{ and } O \text{ is on } K \]
\[\therefore \angle ROS = \angle ROP + \angle TOP + \angle TOQ + \angle SOQ \]
\[= 2(\angle TOP + \angle TOQ) \]
\[= 2\angle POQ = 180^\circ \]
\[\therefore RS \text{ is a straight line with } PR \perp RS \perp QS \]
\[\therefore PR \parallel QS \]

Hence the tangents other than PQ to C from points P and Q are parallel.

2. Let $f(x) = 5^x$. Determine all real solutions of the equation

\[f(x + f(2008)) = 2008 - x. \]

Solution. Hint. $g(x) = f(x + f(2008)) = 5^{x+c}$ where $c = 5^{2008}$ (constant) is a strictly increasing function of x; $h(x) = 2008 - x$ is a strictly decreasing function of x; there exists x_1 and x_2 such that $h(x_1) > g(x_1)$ and $g(x_2) > h(x_2)$. Putting this together gives the existence of a unique solution, or give a contradiction argument.

Then observe that $x = 2008 - f(2008) = 2008 - 5^{2008}$ satisfies the equation.

3. A positive integer is called square-free if it has no factor greater than 1 which is a perfect square.
For each positive integer \(n \), let \(f(n) \) be the sum of all square-free factors of \(n \). Determine all values of \(n \), for which \(f(n)/n \) is an integer.

Solution. Hint. Try small values of \(n \). Write \(n \) in terms of its prime decomposition. Deduce a formula for \(f(n) \) and hence a very restricting condition on the prime divisors of \(f(n)/n \) that shows that there are only a small finite number of solutions.

4. Find all positive integers \(n \) and all prime numbers \(p \) such that the polynomial

\[
x^5 + x + p^n
\]

can be written as the product of two polynomials with integer coefficients and positive degrees.

Solution. Let \(q(x) = x^5 + x + p^n = a(x)b(x) \) with \(\partial a \leq \partial b \) (where \(\partial u \) is the degree of the polynomial \(u(x) \)). The either \(\partial a = 1 \) and \(\partial b = 4 \) or \(\partial a = 2 \) and \(\partial b = 3 \).

Case 1: \(\partial a = 2 \) and \(\partial b = 3 \). Then, for some \(\alpha, \beta, \gamma, \delta, \varepsilon \),

\[
q(x) = (x^2 + \alpha x + \beta)(x^3 + \gamma x^2 + \delta x + \varepsilon)
\]

\[
= x^5 + \gamma x^4 + \delta x^3 + \varepsilon x^2 + \alpha x^4 + \alpha \gamma x^3 + \alpha \delta x^2 + \alpha \varepsilon x
\]

\[
+ \beta x^3 + \beta \gamma x^2 + \beta \delta x + \beta \varepsilon
\]

\[
= x^5 + (\gamma + \alpha) x^4 + (\delta + \alpha \gamma + \beta) x^3 + (\varepsilon + \alpha \delta + \beta \gamma) x^2 + (\alpha \varepsilon + \beta \delta)x + \beta \varepsilon
\]

\[
= x^5 + 0 \cdot x^4 + 0 \cdot x^3 + 0 \cdot x^2 + 1 \cdot x + p^n
\]

Equating coefficients we have

\[
\gamma + \alpha = 0 \quad \Rightarrow \quad \gamma = -\alpha
\]

\[
\delta + \alpha \gamma + \beta = 0 \quad \Rightarrow \quad \delta = -\alpha \gamma - \beta = \alpha^2 - \beta
\]

\[
\varepsilon + \alpha \delta + \beta \gamma = 0 \quad \Rightarrow \quad \varepsilon = -\alpha \delta - \beta \gamma = \alpha(2\beta - \alpha^2)
\]

\[
\alpha \varepsilon + \beta \delta = 1 \quad \Rightarrow \quad \alpha \varepsilon + \beta \delta = 1
\]

\[
\beta \varepsilon = p^n \quad \Rightarrow \quad \alpha \beta(2\beta - \alpha^2) = p^n
\]

By (2) each of \(\alpha \) and \(\beta \) divide \(p^n \), and so each has magnitude that is a power of \(p \). However, \(p \) cannot divide both of \(\alpha \) and \(\beta \), since otherwise \(p \) would divide the righthand side of (1). So, one of \(\alpha \) and \(\beta \) is \(\pm 1 \).

Subcase (i): \(\alpha = \pm 1 \). Then by (1),

\[
3\beta - 1 - \beta^2 = 1
\]

\[
\beta^2 - 3\beta + 2 = 0
\]

\[
(\beta - 2)(\beta - 1) = 0
\]

so that \(\beta = 1 \) or 2; substitution in (2), give \(p^n = \pm 1 \) or \(\pm 6 \), respectively. Either way, \(p^n \) is not a power of a prime (contradiction).
Subcase (ii): $\beta = \pm 1$. Then by (1),

\[
\pm 3\alpha^2 - \alpha^4 - 1 = 1 \\
\alpha^4 - 3\alpha^2 + 2 = 0 \\
(\alpha^2 \mp 2)(\alpha^2 \mp 1) = 0
\]

so that $\alpha^2 = \pm 1$ or ± 2. Since α is an integer, this gives $\alpha = \pm 1$, only, which was the premise of Subcase (i). So again we have a contradiction.

So we cannot have $\partial a = 2$ and \partial b = 3.

Case 2: $\partial a = 1$ and $\partial b = 4$. Let $a(x) = x - \kappa$. Then since $a(x)$ is a linear factor of $q(x)$, by the Factor Theorem,

\[
q(\kappa) = \kappa^5 + \kappa + p^n = 0 \\
\kappa(\kappa^4 + 1) = -p^n.
\]

But $\gcd(\kappa, \kappa^4 + 1) = 1$, whereas each factor of the lefthand side of (3), namely κ and $\kappa^4 + 1$, has absolute value necessarily a power of p. Thus κ or $\kappa^4 + 1$ is ± 1.

Subcase (i): $\kappa^4 + 1 = \pm 1$. Since $\kappa^4 + 1$ cannot be negative we have $\kappa^4 + 1 = 1$ which implies $\kappa = 0$ and consequently $-p^n = 0$ (contradiction).

Subcase (ii): $\kappa = \pm 1$. Since $\kappa^4 + 1$ is positive and $\kappa(\kappa^4 + 1) = -p^n < 0$, we have $\kappa = -1$ which implies $\kappa^4 + 1 = 2$ and consequently $-p^n = 2$, i.e.

\[
p = 2, n = 1.
\]

Indeed, with $n = 1$ and $p = 2$,

\[
x^5 + x + 2 = (x + 1)(x^4 - x^3 + x^2 - x + 2).
\]

Thus there is exactly one solution $(n, p) = (1, 2)$ for which

\[
x^5 + x + p^n
\]

can be written as the product of two positive-degree polynomials over the integers.

5. For each positive integer m, let $F(m)$ be the largest integer such that $10^{F(m)}$ divides $m!$.

Prove that there exists a positive integer n such that for each m

\[
either F(m) \leq n \quad \text{or} \quad F(m) \geq n + 2008.
\]

Solution. Hint. In general, $N! = N \cdot (N - 1)!$. Use this to deduce an expression for $F(10^{2008})$ and observe that F is monotonic increasing.

6. Let $ABCD$ be a convex quadrilateral. Suppose there is a point P on the segment AB with $\angle APD = \angle BPC = 45^\circ$.

If Q is the intersection of the line AB with the perpendicular bisector of CD, prove $\angle CQD = 90^\circ$.

3
Solution. Let R be the midpoint of CD. Thus RQ is the perpendicular bisector of CD.

\[
\angle DPC = 180^\circ - \angle APD - \angle BPC
\]

\[
= 90^\circ
\]

\[\therefore P \text{ lies on the circle with diameter } CD\]
Call this circle K. Then

D, P, C lie on K which has centre R and radius RC.

Let PB intersect K at Q'. Then

\[
\angle Q'PC = \angle BPC = 45^\circ
\]

and

\[
\angle Q'RC = 2\angle Q'PC = 90^\circ, \quad \text{angles at circumference and centre standing on common chord } Q'C
\]

\[\therefore Q' \text{ lies on perpendicular bisector of } CD \text{ and on } AB.\]
Thus Q' is the intersection of the line AB with the perpendicular bisector of CD.

\[\therefore Q' = Q \text{ lies on } K\]

\[\therefore \angle CQD = 90^\circ, \quad \text{(angle in a semicircle)}.\]

Alternative Method. Let $\theta = \angle RPC$. Then

\[
\angle RCP = \theta, \quad \text{since } RP = RC \text{ (radii of } K),
\]

so that $\triangle PRC$ is isosceles

\[\therefore \angle DRP = 2\theta, \quad \text{(sum of interior opposite angles of } \triangle PRC)\]

\[\therefore \angle PRQ = 180^\circ - \angle DRP - \angle CRQ
\]

\[= 90^\circ - 2\theta\]

\[\therefore \angle RQP = 180^\circ - \angle PRQ - \angle RPQ
\]

\[= 180^\circ - (90^\circ - 2\theta) - (45^\circ + \theta)
\]

\[= 45^\circ + \theta = \angle RPQ
\]

\[\therefore \triangle PRQ \text{ is isosceles}
\]

\[\therefore RP = RQ
\]

\[\therefore Q \text{ lies on } K, \text{ since } RP = RQ \text{ is a radius of } K
\]

\[\therefore \angle CQP = 90^\circ
\]

since $\angle CQP$ is an angle in a semicircle, as before.

7. Let $A_1A_2A_3$ and $B_1B_2B_3$ be triangles. If

\[p = A_1A_2 + A_2A_3 + A_3A_1 + B_1B_2 + B_2B_3 + B_3B_1, \text{ and}
\]

\[q = A_1B_1 + A_1B_2 + A_1B_3 + A_2B_1 + A_2B_2 + A_2B_3 + A_3B_1 + A_3B_2 + A_3B_3,
\]

prove that $3p \leq 4q$.

Solution. For convenience, let $A_4 = A_1$ and $B_4 = B_1$, so that we may write p and q in Σ notation as follows

\[p = \sum_{i=1}^{3} (A_iA_{i+1} + B_iB_{i+1}) \quad \text{and} \quad q = \sum_{i=1}^{3} \sum_{j=1}^{3} A_iB_j.
\]
Now, by the Triangle Inequality, we have for each \(i \) and each \(j \),
\[
A_iA_{i+1} \leq A_iB_j + B_jA_{i+1} \quad \text{and} \quad B_iB_{i+1} \leq B_iA_j + A_jB_{i+1},
\]
Thus we have
\[
3A_iA_{i+1} \leq \sum_{j=1}^{3} (A_iB_j + B_jA_{i+1}) \quad \text{and} \quad 3B_iB_{i+1} \leq \sum_{j=1}^{3} (B_iA_j + A_jB_{i+1})
\]
\[
3p = \sum_{i=1}^{3} 3(A_iA_{i+1} + B_iB_{i+1}) \leq \sum_{i=1}^{3} \sum_{j=1}^{3} (A_iB_j + B_jA_{i+1} + B_iA_j + A_jB_{i+1})
\]
\[
= 4 \sum_{i=1}^{3} \sum_{j=1}^{3} A_iB_j, \quad \text{since each of the sums} \sum_{i,j} A_iB_j, \sum_{i,j} B_jA_{i+1}, \sum_{i,j} B_iA_j, \sum_{i,j} A_jB_{i+1} \text{covers each of the 9 different} (A_i, B_j) \text{pairs exactly once and} A_iB_j = B_jA_i
\]
\[
= 4q.
\]

8. A rectangular chessboard has 5 rows and 2008 columns. Each square is painted either red or blue.

Determine the largest integer \(N \) which guarantees that, no matter how the chessboard is coloured, there are two rows which have matching colours in at least \(N \) columns.

Solution. Hint. Use the Pigeon Hole Principle to show \(N \geq 804 \). Then show \(N \leq 804 \). Finally, construct an example to show \(N = 804 \) is indeed the required solution.