Pólya Problems 1 to 6 with Solutions

1. (2006) Factor:

 (i) \(x^4 - 7x^2y^2 + y^4 \)

 Solution. First we try to bind up the \(x^4 \) and \(y^4 \) terms using an \((A + B)^2\) or \((A - B)^2\) factorisation and then finish off with *difference of squares*:

 \[
 x^4 - 7x^2y^2 + y^4 = x^4 + 2x^2y^2 + y^4 - 9x^2y^2 \\
 = (x^4 + y^4)^2 - (3xy)^2 \\
 = (x^4 + y^4 + 3xy)(x^4 + y^4 - 3xy)
 \]

 (ii) \((a + b)^2 + (b + c)^2 + (c + a)^2 - a^2 - b^2 - c^2 \)

 Solution. There’s a number of ways to do this one. Let us simply expand it and observe that

 \[
 (a_1 + a_2 + \cdots + a_n)^2 = a_1^2 + a_2^2 + \cdots + a_n^2 + 2a_1a_2 + 2a_1a_3 + 2a_1a_n + 2a_2a_3 + \cdots + 2a_{n-1}a_n
 \]

 where each possible product \(a_ia_j \) occurs exactly once (with coefficient 2). Sometimes this is written

 \[
 \left(\sum_{i=1}^{n} a_i \right)^2 = \sum_{i=1}^{n} a_i^2 + \sum_{1 \leq i < j \leq n} 2a_ia_j.
 \]

 Here’s an approach to the problem just using \((A + B)^2\) expansion/factorisation:

 \[
 (a + b)^2 + (b + c)^2 + (c + a)^2 - a^2 - b^2 - c^2 \\
 = (a + b)^2 + b^2 + c^2 + 2bc + c^2 + a^2 + 2ac - a^2 - b^2 - c^2 \\
 = (a + b)^2 + c^2 + 2bc + 2ac \\
 = (a + b)^2 + 2(a + b)c + c^2 \\
 = ((a + b) + c)^2 \\
 = (a + b + c)^2
 \]

2. (2007) Factor:

 (i) \(x^8 + 2x^4y^4 + 9y^8 \)

 Solution. First we try to bind up the \(x^4 \) and \(y^4 \) terms using an \((A + B)^2\) or \((A - B)^2\) factorisation and then finish off with *difference of squares*:

 \[
 x^8 + 2x^4y^4 + 9y^8 = x^8 + 6x^4y^4 + 9y^4 - 4x^4y^4 \\
 = (x^4 + 3y^4)^2 - (2x^2y^2)^2 \\
 = (x^4 + 3y^4 + 2x^2y^2)(x^4 + 3y^4 - 2x^2y^2)
 \]

 This is as far as we can go over \(\mathbb{Q} \). Further factorisation is possible over \(\mathbb{C} \).
(ii) \(a^4 + b^4 + c^2 - 2(a^2b^2 + a^2c + b^2c) \)

Solution. As usual there are many ways to do this one, but let’s stick to using the order two identities in \(A \) and \(B \). It’s helpful to make the observation that:

\[
(A + B)^2 - (A - B)^2 = 4AB.
\]

\[
a^4 + b^4 + c^2 - 2(a^2b^2 + a^2c + b^2c) = a^4 + b^4 - 2a^2b^2 + c^2 - 2c(a^2 + b^2)
= (a^2 - b^2)^2 - (a^2 + b^2)^2 + c^2 - 2c(a^2 + b^2) + (a^2 + b^2)^2
= -4a^2b^2 + (c - (a^2 + b^2))^2
= (c - (a^2 + b^2))^2 - (2a^2b^2)^2
= (c - (a^2 + b^2))^2 + 2a^2b^2(c - (a^2 + b^2) - 2a^2b^2)
= (c - (a - b)^2)(c - (a + b)^2)
\]

It was unnecessary to go past the second last step, but the form of the last expression is quite attractive ;-).

3. (2006) Prove that

\[
1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99}
\]

is divisible by 15.

Solution. The idea is to show the expression is divisible by each of the prime divisors of 15, namely 3 and 5.

The Pólya approach is to use the identities:

\[
A^n - B^n = (A - B)(A^{n-1} + A^{n-2}B + \cdots + A^{n-k}B^k + \cdots + B^{n-1})
\]

\[
A^n + B^n = (A + B)(A^{n-1} - A^{n-2}B + \cdots + (-1)^kA^{n-k}B^k + \cdots + B^{n-1}), \quad n \text{ odd.}
\]

Note that the first identity hold for all \(n \in \mathbb{N} \), but the second only for odd natural numbers \(n \) (since \((-1)^{n-1}\) needs to be +1).

\[
1^{99} + 2^{99} + 3^{99} + 4^{99} + 5^{99} = (1 + 2)(1^{98} + \cdots + 2^{98}) + 3^{99} + (4 + 5)(4^{98} + \cdots + 5^{98})
= 3 \cdot (1^{98} + \cdots + 2^{98}) + 3^{98} \cdot (4^{98} + \cdots + 5^{98})
\]

which demonstrates that 3 divides the given expression.

\[
= (1 + 4)(1^{98} + \cdots + 4^{98}) + (2 + 3)(2^{98} + \cdots + 3^{98}) + 5^{99}
= 5 \cdot (1^{98} + \cdots + 4^{98}) + (2^{98} + \cdots + 3^{98}) + 5^{98}
\]

which demonstrates that 5 divides the given expression.

Thus \(\text{lcm}(3, 5) = 15 \) divides the given expression.

Alternatively, one can use modulo arithmetic, which primarily relies on the fact that:

If \(a \equiv b \pmod{m} \) then \(a^n \equiv b^n \pmod{m} \) for all \(n \in \mathbb{N} \).

This follows from a binomial expansion of \((a + km)^n\), since \(a \equiv b \pmod{m} \) implies that \(b = a + km \) for some integer \(k \).
Recall that: \(N \equiv 0 \pmod{m} \) is equivalent to \(m \mid N \).
\[
\begin{align*}
1^99 + 2^99 + 3^99 + 4^99 + 5^99 & \equiv 1^99 + (-1)^99 + 0^99 + 1^99 + (-1)^99 \pmod{3} \\
& \equiv 0 \pmod{3}
\end{align*}
\]
So the given expression is congruent to 0 modulo 3, and hence is divisible by 3.
\[
\begin{align*}
1^99 + 2^99 + 3^99 + 4^99 + 5^99 & \equiv 1^99 + 2^99 + (-2)^99 + (-1)^99 + 0^99 \pmod{5} \\
& \equiv 0 \pmod{5}
\end{align*}
\]
So the given expression is congruent to 0 modulo 5, and hence is divisible by 5.
As before we finish by deducing that \(\text{lcm}(3, 5) = 15 \) divides the given expression.

4. (2007) Prove that
\[
20^{22} - 17^{22} + 4^{33} - 1
\]
is divisible by 174.

Solution. Let \(N = 20^{22} - 17^{22} + 4^{33} - 1 \).
Observe that 174 = 2 \cdot 3 \cdot 29. So we show that each of 2, 3 and 29 divides \(N \), by showing that \(N \) is congruent to 0 modulo each of these primes.
\[
\begin{align*}
N &= 20^{22} - 17^{22} + 4^{33} - 1 \equiv 0^{22} - 1^{22} + 0^{33} - 1 \pmod{2} \\
& \equiv 0 \pmod{2}
\end{align*}
\]
So \(2 \mid N \).
\[
\begin{align*}
N &= 20^{22} - 17^{22} + 4^{33} - 1 \equiv (-1)^{22} - (-1)^{22} + 1^{33} - 1 \pmod{3} \\
& \equiv 0 \pmod{3}
\end{align*}
\]
So \(3 \mid N \).
\[
\begin{align*}
N &= 20^{22} - 17^{22} + 4^{33} - 1 \equiv (-9)^{22} - (-12)^{22} + (4^3)^{11} - 1 \pmod{29} \\
& \equiv ((-9)^2)^{11} - ((-12)^2)^{11} + (4^3)^{11} - 1 \pmod{29} \\
& \equiv 81^{11} - 144^{11} + 64^{11} - 1 \pmod{29} \\
& \equiv (-6)^{11} - (-1)^{11} + 6^{11} - 1 \pmod{29} \\
& \equiv -6^{11} + 1 + 6^{11} - 1 \pmod{29} \\
& \equiv 0 \pmod{29}
\end{align*}
\]
So \(29 \mid N \).
So \(\text{lcm}(2, 3, 29) = 174 \mid N = 20^{22} - 17^{22} + 4^{33} - 1 \).

5. (2006) Find all possible integers \(n \) such that the fraction
\[
\frac{n^3 - 1}{n^2 + 11n - 12}
\]
reduces to an integer.
Solution. Firstly, let the given expression be N. Then

$$N = \frac{n^3 - 1}{n^2 + 11n - 12} = \frac{(n - 1)(n^2 + n + 1)}{(n - 1)(n + 12)} = \frac{n^2 + n + 1}{n + 12}.$$

Now we perform the Division Algorithm on $n^2 + n + 1$ in order to find its remainder on division by $n + 12$:

\[
\begin{array}{rcl}
\frac{n^2 + n + 1}{n + 12} & & \\
\text{(dividend)} & & \\
\text{rem. 133} & & \\
\end{array}
\]

\[
\begin{array}{rcl}
(n + 12) & & \\
\text{(divisor)} & & \\
\frac{n^2 + 12n}{n^2 + n + 1} & & \\
\frac{-11n + 1}{-11n - 132} & & \\
\frac{133}{133} & & \\
\end{array}
\]

Thus,

$$N = \frac{n^2 + n + 1}{n + 12} = \frac{(n + 12)(n - 11) + 133}{n + 12} = n - 11 + \frac{133}{n + 12}.$$

Hence N is an integer only if $n + 12$ is a divisor of 133. Factorising 133 (the prime divisor candidates to check are 2, 3, 5, 7, 11, since $13^2 > 133$), we find $133 = 7 \times 19$. Thus all the integer divisors of 133 are of form $\pm 7^e 19^f$, for $e, f \in \{0, 1\}$, i.e. the integer divisors of 133 (and hence the possible values of $n + 12$) are:

$$1, -1, 7, -7, 19, -19, 133, -133.$$

Thus

$$n + 12 = 1 \implies n = -11$$
$$n + 12 = -1 \implies n = -13$$
$$n + 12 = 7 \implies n = -5$$
$$n + 12 = -7 \implies n = -19$$
$$n + 12 = 19 \implies n = 7$$
$$n + 12 = -19 \implies n = -31$$
$$n + 12 = 133 \implies n = -121$$
$$n + 12 = -133 \implies n = -145.$$

Hence $n \in \{-11, -13, -5, -19, 7, -31, -121, -145\}.$