1. If \(S_n = 2^1 + 2^2 + 2^3 + \cdots + 2^n \),

 (i) what is the 10th term of the series?

 \textbf{Solution.} \(2^{10} \)

 (ii) what is the value of \(S_5 \)?

 \textbf{Solution.} \(S_5 = 2^1 + 2^2 + 2^3 + \cdots + 2^5 = 2^1 \cdot \frac{2^5 - 1}{2 - 1} = 62. \)

 (iii) express the series in sigma notation.

 \textbf{Solution.} \(S_n = 2^1 + 2^2 + 2^3 + \cdots + 2^n = \sum_{k=1}^{n} 2^k. \)

2. Write down in expanded form:

 (i) \(\sum_{i=1}^{4} x_i^2 \)

 \textbf{Solution.} \(\sum_{i=1}^{4} x_i^2 = x_1^2 + x_2^2 + x_3^2 + x_4^2 \)

 (ii) \(\sum_{i=1}^{5} (-1)^i i \)

 \textbf{Solution.} The important thing to observe here is the sign alternation, which is the effect of \((-1)^i:\)

 \(\sum_{i=1}^{5} (-1)^i i = -1 + 2 - 3 + 4 - 5. \)

 (iii) \(\sum_{i=1}^{7} i^2 \)

 \textbf{Solution.} \(\sum_{i=1}^{7} i^2 = 1^2 + 2^2 + 3^2 + \cdots + 7^2 \)

 (iv) \(\sum_{i=1}^{4} (i + 2)(i + 3) \)

 \textbf{Solution.} \(\sum_{i=1}^{4} (i + 2)(i + 3) = 3 \cdot 4 + 4 \cdot 5 + 5 \cdot 6 + 6 \cdot 7 \)
3. Let \(S_n = 1 - 4 + 16 - 64 + \cdots + (-1)^{n-1}4^{n-1} \).

(i) Find a formula for \(S_n \).

Solution. \(S_n \) is a *geometric series* with *first term* 1 and *common ratio* -4. So

\[
S_n = 1 \cdot \frac{1 - (-4)^n}{1 - (-4)} = \frac{1 - (-4)^n}{5}.
\]

(ii) Express \(S_n \) in sigma notation.

Solution. \(S_n = \sum_{k=1}^{n} (-4)^{k-1} \).

4. Find the \(n^{th} \) term of the series 17 + 13 + 9 + 5 + 1 - 3 - \cdots.

Solution. The series is *arithmetic* with *first term* 17 and *common difference* -4. So the \(n^{th} \) term is

\[
a_n = 17 + (n - 1) \cdot -4 = 21 - 4n.
\]

5. Find the sum of the following series.

(i) 7 + 13 + 19 + 25 + \cdots + 115

Solution. The series is *arithmetic* with *first term* \(a_1 = 7 \) and *common difference* \(d = 6 \). We need to determine the number of terms \(n \); the difference of the last and first terms,

\[
115 - 7 = (n - 1)d
\]

\[
n - 1 = \frac{115 - 7}{6} = 18
\]

\[
n = 19
\]

\[
\therefore \text{the sum } S = \frac{n}{2}(a_1 + a_n)
\]

\[
= \frac{19}{2}(7 + 115)
\]

\[
= 1159
\]

(ii) 17 + 13 + 9 + 5 + 1 - 3 - \cdots - 107

Solution. The series is *arithmetic* with *first term* \(a_1 = 17 \) and *common difference* \(d = -4 \). We need to determine the number of terms \(n \),

\[
-107 - 17 = (n - 1)d
\]

\[
n - 1 = \frac{-124}{-4} = 31
\]

\[
n = 32
\]

\[
\therefore \text{the sum } S = \frac{n}{2}(a_1 + a_n)
\]

\[
= \frac{32}{2}(17 + -107)
\]

\[
= -1440
\]
(iii) 1 + 2 + 3 + \cdots + 99

Solution. 1 + 2 + 3 + \cdots + 99 = \frac{99}{2}(1 + 99) = 4950.

(iv) 1 + 2 - 3 + 4 - 5 + \cdots + 1990 - 1991

Solution.

\[1 + 2 - 3 + 4 - 5 + \cdots + 1990 - 1991 = 1 - 1 + \cdots - 1,\]

there are \(\frac{1990}{2} = 995\) \((-1)\)s

\[= 1 - 995 = -994\]

6. Find the value of the series \(a_1 + a_2 + a_3 + \cdots + a_{100}\) where \(a_1 = 1, a_2 = 2 + 3, a_3 = 4 + 5 + 6, \) etc.

Solution. Observe that \(a_1\) has one term, \(a_2\) has two terms, \ldots, and in general \(a_k\) has \(k\) terms, so that \(a_1 + a_2 + \cdots + a_k\) has \(1 + 2 + \cdots + k = \frac{k(k+1)}{2}\) terms, and hence

\[a_1 + a_2 + \cdots + a_k = 1 + 2 + \cdots + \frac{k(k+1)}{2} = \frac{k(k+1)/2}{2}
\]

Thus

\[a_1 + a_2 + a_3 + \cdots + a_{100} = \frac{100 \cdot 101/2}{2} \left(1 + \frac{100 \cdot 101}{2}\right) = \frac{5050}{2} \cdot 5051 = 12753775.\]

7. If \(a, b, c, d\) is an arithmetic sequence such that

\[a + b + c + d = 8\] \hspace{1cm} (1)

\[ad + bc = -2,\] \hspace{1cm} (2)

find the values of \(a, b, c\) and \(d\).

Solution. Since \(a, b, c, d\) is an arithmetic sequence, let the common difference be \(\delta\), so that the sequence may be written as \(a, a + \delta, a + 2\delta, a + 3\delta, \) and hence

\[8 = a + b + c + d = 4a + (1 + 2 + 3)\delta,\]

by (1)

\[4 = 2a + 3\delta\]

\[2a = 4 - 3\delta\] \hspace{1cm} (3)

\[-2 = ad + bc = a(a + 3\delta) + (a + \delta)(a + 2\delta),\]

by (2)

\[-2 = 2a^2 + 6a\delta + 2\delta^2\]

\[-4 = 4a^2 + 12a\delta + 4\delta^2\]

\[= (4 - 3\delta)^2 + 6(4 - 3\delta)\delta + 4\delta^2,\]

substituting (3)

\[= 16 + (-24 + 24)\delta + (9 - 18 + 4)\delta^2\]

\[-20 = -5\delta^2\]

\[\delta^2 = 4\]

\[\delta = \pm 2\]

If \(\delta = 2\) then, by (3), \(a = (4 - 6)/2 = -1,\) and we get the sequence \(-1, 1, 3, 5,\)

If \(\delta = -2\) then, by (3), \(a = (4 + 6)/2 = 5,\) and we get the sequence \(5, 3, 1, -1\) (the other solution in reverse).
8. The houses of a street are numbered consecutively from 1 to 49. Show that there is a value of \(x \) such that the sum of the numbers of the houses before the house numbered \(x \) is equal to the sum of the numbers of the houses after it, and find this value of \(x \).

9. Show that if \(k, n \in \mathbb{N} \), then the sum of all positive integers less than \(kn \) which are not divisible by \(k \) is

\[
\frac{1}{2}k(k-1)n^2.
\]

Solution. In sigma notation, we are required to find

\[
\sum_{\substack{1 \leq j < kn \\backslash \ \mid k}} j = \sum_{j=1}^{kn} j - \sum_{\substack{1 \leq j < kn \\backslash \ \mid k}} j
\]

\[
= \sum_{j=1}^{kn} j - n \sum_{m=1}^{n} km, \quad \text{since } k \mid j \Rightarrow j = km \text{ for some } m,
\]

\[
= \sum_{j=1}^{kn} j - k \sum_{m=1}^{n} m
\]

\[
= \frac{kn}{2} (1 + kn) - k \cdot \frac{n}{2} (1 + n)
\]

\[
= \frac{kn}{2} (kn - n)
\]

\[
= \frac{kn}{2} (k-1)n = \frac{1}{2}k(k-1)n^2
\]

10. If \(a, b, c \) is an arithmetic sequence, prove that

\[
\frac{1}{\sqrt{a} + \sqrt{b}}, \frac{1}{\sqrt{c} + \sqrt{a}}, \frac{1}{\sqrt{b} + \sqrt{c}}
\]

is also an arithmetic sequence.

Solution. We are given that \(a, b, c \) is an arithmetic sequence, i.e. we have \(c - b = b - a \).

Now we need to consider the corresponding differences in terms of the second sequence.

\[
\frac{1}{\sqrt{b} + \sqrt{c}} - \frac{1}{\sqrt{c} + \sqrt{a}} = \frac{(\sqrt{c} + \sqrt{a}) - (\sqrt{b} + \sqrt{c})}{(\sqrt{b} + \sqrt{c})(\sqrt{c} + \sqrt{a})}
\]

\[
= \frac{\sqrt{a} - \sqrt{b}}{(\sqrt{b} + \sqrt{c})(\sqrt{c} + \sqrt{a})}
\]

\[
= \frac{(\sqrt{a} - \sqrt{b})(\sqrt{b} - \sqrt{c})(\sqrt{c} - \sqrt{a})}{(b - c)(c - a)}
\]

\[
= \frac{1}{\sqrt{c} + \sqrt{a}} - \frac{1}{\sqrt{a} + \sqrt{b}} = \frac{(\sqrt{a} + \sqrt{b}) - (\sqrt{c} + \sqrt{a})}{(\sqrt{c} + \sqrt{a})(\sqrt{a} + \sqrt{b})}
\]

\[
= \frac{\sqrt{b} - \sqrt{c}}{(\sqrt{c} + \sqrt{a})(\sqrt{a} + \sqrt{b})}
\]

\[
= \frac{(\sqrt{b} - \sqrt{c})(\sqrt{c} - \sqrt{a})(\sqrt{a} - \sqrt{b})}{(c - a)(a - b)}
\]

Now observe that the expressions for (4) and (5) are the same, since \(c - b = b - a \) implies \(b - c = a - b \). Hence the second sequence is also arithmetic.
11. If \(a \) is the first term of an arithmetic sequence and \(b \) is the \(n \)th term of the sequence, what is the \(r \)th term of the sequence?

Solution. Let \(d \) be the common difference of the arithmetic sequence. Then

\[
b = a + (n - 1)d, \quad \text{i.e.} \quad d = \frac{b - a}{n - 1}.
\]

So, the \(r \)th term \(a_r \) of the sequence is given by:

\[
a_r = a + (r - 1)d = a + \frac{r - 1}{n - 1}(b - a) = \frac{(n - 1)a + (r - 1)(b - a)}{n - 1} = \frac{(n - r)a + (r - 1)b}{n - 1}.
\]

12. If \(S_n = \sum_{k=1}^{n} k(k + 1) \), find a formula for \(S_n \) in terms of \(n \).

Solution.

\[
\sum_{k=1}^{n} k(k + 1) = \sum_{k=1}^{n}(k^2 + k) = \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k = \frac{1}{6}n(n + 1)(2n + 1) + \frac{1}{2}n(n + 1) = \frac{1}{6}n(n + 1)((2n + 1) + 3) = \frac{1}{3}n(n + 1)(n + 2).
\]

13. If \(S_n = \sum_{k=1}^{n} k(k + 1)(k + 2) \) show that \(S_n = \frac{1}{4}n(n + 1)(n + 2)(n + 3) \).

Solution. Let us instead prove the more general result

\[
\sum_{k=1}^{n} k(k + 1) \cdots (k + m - 1) = \frac{1}{m + 1} n(n + 1)(n + 2) \cdots (n + m), \quad (6)
\]

for \(m \in \mathbb{N} \).

Then the result we were required to prove is the case \(m = 3 \). The general result (6) follows from looking at the expression

\[
\sum_{k=1}^{n} k(k + 1) \cdots (k + m) - \sum_{k=0}^{n-1} k(k + 1) \cdots (k + m)
\]

in two ways:
\[n(n + 1) \cdots (n + m) = \sum_{k=1}^{n} k(k + 1) \cdots (k + m) - \sum_{k=0}^{n-1} k(k + 1) \cdots (k + m) \]
\[= \sum_{k=0}^{n-1} (k + 1) \cdots (k + m)(k + m + 1) - \sum_{k=0}^{n-1} k(k + 1) \cdots (k + m) \]
\[= \sum_{k=0}^{n-1} (k + 1) \cdots (k + m)((k + m + 1) - k) \]
\[= \sum_{k=0}^{n-1} (k + 1) \cdots (k + m)(m + 1) \]
\[= (m + 1) \sum_{k=0}^{n-1} (k + 1) \cdots (k + m) \]
\[= (m + 1) \sum_{k=1}^{n} k(k + 1) \cdots (k + m - 1) \]

Finally, dividing through by \(m + 1 \) gives us the result.

14. Find the number of tennis balls that can be arranged in a pyramidal pile on a square base, each side of the base containing 10 balls.

15. Find the number of tennis balls that can be arranged in a pyramidal pile on a triangular base, each side of the base containing 12 balls.

16. (i) Show that \(\frac{1}{k} - \frac{1}{k + 1} = \frac{1}{k(k + 1)} \).

Solution. \(\frac{1}{k} - \frac{1}{k + 1} = \frac{k + 1 - k}{k(k + 1)} = \frac{1}{k(k + 1)} \).

(ii) Write down the first 5 terms of the series \(\sum_{k=1}^{n} \frac{1}{k(k + 1)} \).

Solution. The 1st 5 terms are \(\frac{1}{1 \cdot 2} = \frac{1}{2}, \frac{1}{2 \cdot 3} = \frac{1}{6}, \frac{1}{3 \cdot 4} = \frac{1}{12}, \frac{1}{4 \cdot 5} = \frac{1}{20}, \frac{1}{5 \cdot 6} = \frac{1}{30} \).

(iii) Use the result in (i) to show that \(\sum_{k=1}^{n} \frac{1}{k(k + 1)} = 1 - \frac{1}{n + 1} \).

Solution. Doing it long-hand,
\[\sum_{k=1}^{n} \frac{1}{k(k + 1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n + 1)} \]
\[= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n + 1} \]
\[= 1 - \frac{1}{n + 1} \]
Doing it again, using sigma notation,

\[
\sum_{k=1}^{n} \frac{1}{k(k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) \\
= \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} \\
= 1 - \frac{1}{n+1}
\]

(iv) Evaluate \(\frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \frac{1}{7 \cdot 8} + \cdots + \frac{1}{20 \cdot 21} \).

Solution. We could see this directly, by

\[
\frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \frac{1}{7 \cdot 8} + \cdots + \frac{1}{20 \cdot 21} = \frac{1}{5} - \frac{1}{6} + \frac{1}{6} - \frac{1}{7} + \frac{1}{7} - \frac{1}{8} + \cdots + \frac{1}{20} - \frac{1}{21} \\
= \frac{1}{5} - \frac{1}{21} = \frac{21 - 5}{105} = \frac{16}{105}
\]

Alternatively, we could use the previous result:

\[
\frac{1}{5 \cdot 6} + \frac{1}{6 \cdot 7} + \frac{1}{7 \cdot 8} + \cdots + \frac{1}{20 \cdot 21} = \sum_{k=5}^{20} \frac{1}{k(k+1)} = \sum_{k=1}^{20} \frac{1}{k(k+1)} - \sum_{k=1}^{4} \frac{1}{k(k+1)} \\
= \left(1 - \frac{1}{21} \right) - \left(1 - \frac{1}{5} \right) \\
= \frac{1}{5} - \frac{1}{21} = \frac{21 - 5}{105} = \frac{16}{105}
\]

17. Show that, for all positive integers \(n \),

\[
1^2 - 2^2 + 3^2 - 4^2 + \cdots + (-1)^n(n - 1)^2 + (-1)^{n+1}n^2 \\
= (-1)^{n+1}(1 + 2 + 3 + \cdots + n).
\]

18. Simplify

\[
\left(\frac{1 \cdot 2 \cdot 4 + 2 \cdot 4 \cdot 8 + \cdots + n \cdot 2n \cdot 4n}{1 \cdot 3 \cdot 9 + 2 \cdot 6 \cdot 18 + \cdots + n \cdot 3n \cdot 9n} \right)^{\frac{1}{2}}.
\]