1. Construct the perpendicular bisector of a line segment AB.

2. Construct the angle bisector of an angle $C\hat{A}B$.

3. Prove that the altitudes of a triangle concur.
 (The point of concurrence is called the orthocentre.)
 \textbf{Hints.} Let the triangle be ABC.
 Construct EF through B s.t. $EF\parallel AC$, DE through C s.t. $EF\parallel AB$, DF through A s.t. $EF\parallel BC$.
 Show altitudes of $\triangle ABC$ are \perp bisectors of sides of $\triangle DEF$.

4. Prove that the medians of a triangle concur.
 (The point of concurrence is called the centroid.)
 Also show that the medians trisect each other, i.e. cut each other in the ration 2 : 1.
 \textbf{Hints.} Let the triangle be ABC.
 Construct medians AE, BD and call their point of intersection O.
 Construct midpoints R, S of OA and OB, respectively.
 Show $RSED$ is a parallelogram.
 Construct median CF. Let intersection of AE and CF be O'.
 Show $O = O'$.

5. Draw triangle ABC. Let the sides opposite angles $\angle A, \angle B, \angle C$ be a, b, c, respectively.

 (i) Show $a = b \cos C + c \cos B$.
 \textbf{Hint.} Drop a perpendicular from A to BC.

 (ii) Deduce $\sin(B + C) = \sin B \cos C + \sin C \cos B$.

6. Prove that in any triangle ABC, with sides a, b, c as described in the previous question:
 $$a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0.$$
 \textbf{Hint.} Substitute $\sin A = a/(2R)$, etc. in the LHS and simplify.

7. Prove area of triangle ABC, is given by $abc/(4R)$, where a, b, c are as described previously and R is the circumradius.
 \textbf{Hint.} Use the sine area formula for a triangle and use the Sine Rule.