1. Consider a linear model of the form

\[Y = X\beta + E \]

where \(Y \) is the column vector of responses \(Y_1, \ldots, Y_n \) for \(n \) individuals, \(X \) is an \(n \times q \) matrix of known values, \(\beta \) is a column vector of parameters \(\beta_1, \ldots, \beta_p \), and \(E \) is a column vector of errors \(E_1, \ldots, E_n \) which are assumed to be i.i.d. Normal \(N(0, \sigma^2) \) random variables.

The maximum likelihood estimator of the parameter vector \(\beta \) is \(\hat{\beta} = (X^T X)^{-1} X^T Y \). The vector of fitted values is \(\hat{Y} = X\hat{\beta} \) and the vector of residuals is \(R = Y - \hat{Y} \).

(a) Show that \(X^T R = 0 \), whatever the values of \(Y_i \) are.

(b) Suppose that the design matrix \(X \) contains a column of 1’s. Show that the residuals must always sum to zero: \(\sum_i R_i = 0 \), whatever the values of \(Y_i \) are.

2. Suppose \(Z_1, Z_2 \) are i.i.d. Normal \(N(0, 1) \) random variables. Find the joint probability distribution of \((Y_1, Y_2) \) where

\[
Y_1 = Z_1 + Z_2 \\
Y_2 = Z_1 - Z_2
\]

[Hint: use properties of the Multivariate Normal Distribution.]

3. Consider the model in Question 1. Instead of assuming that the errors \(E_i \) are i.i.d. Normal \(N(0, \sigma^2) \), let us now assume that the random vector \(E \) has the Multivariate Normal distribution with mean vector \(0 \) and variance-covariance matrix \(\text{E}[EE^T] = aV \) where \(V \) is a known matrix, and \(a \) is an unknown scale factor. (For example, if \(V \) is the identity matrix, this is the same as assuming that the errors are i.i.d. with variance \(a \)). In this case, the maximum likelihood estimator of \(\beta \) is \(\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} Y \).

(a) Show that the MLE is unbiased, that is, that the expected value of the random vector \(\hat{\beta} \) is \(\text{E}[^{\hat{\beta}}] = \beta \).

(b) Find the variance-covariance matrix of \(\hat{\beta} \).

(c) What is the distribution of the random vector \(\hat{\beta} \)?
4. Consider the proportional regression model

\[Y_i = \alpha x_i + E_i, \quad i = 1, \ldots, n \]

where \(Y_1, \ldots, Y_n \) are the responses, \(x_1, \ldots, x_n \) are the corresponding (and known) values of the explanatory variable, \(\alpha \) is the unknown parameter, and \(E_i \) are independent random errors. Assume that the variance of \(E \) is proportional to \(x \), that is,

\[\text{var}(E_i) = cx_i, \quad i = 1, \ldots, n \]

where \(c \) is an unknown scale factor.

Using the results of Question 3,

(a) find the maximum likelihood estimator \(\hat{\alpha} \) of \(\alpha \).

(b) find the distribution of \(\hat{\alpha} \).

5. An integer random variable \(Y \) has the geometric distribution with parameter \(p \), written \(Y \sim \text{Geom}(p) \), if \(P\{Y = y\} = (1 - p)^{y-1}p \) for \(y = 1, 2, \ldots \). The mean is \(\mu = E[Y] = 1/p \).

Consider a generalised linear model with Geometric responses,

\[Y_i \sim \text{Geom}(p_i), \quad i = 1, \ldots, n \]

and linear predictor

\[g(1/p_i) = \beta_1 x_{i1} + \ldots + \beta_q x_{iq}, \quad i = 1, \ldots, n \]

where \(g \) is a known function, \(x_{ij} \) are fixed, known values, and \(\beta_1, \ldots, \beta_q \) are parameters.

(a) Give an expression for the likelihood of the model involving only the means \(\mu_i = 1/p_i \) and the observed responses \(y_i \).

(b) Hence obtain an expression for the deviance of the model, involving only the fitted means \(\widehat{\mu}_i = 1/\widehat{p}_i \) and the observed responses \(y_i \).

6. Consider a generalised linear model with Poisson responses,

\[Y_i \sim \text{Poisson}(\mu_i), \quad i = 1, \ldots, n \]

and linear predictor

\[g(\mu_i) = \beta_1 x_{i1} + \ldots + \beta_q x_{iq}, \quad i = 1, \ldots, n \]

where \(g \) is a known function, \(x_{ij} \) are fixed, known values, and \(\beta_1, \ldots, \beta_q \) are parameters.

(a) Give an expression for the likelihood of the model involving only the means \(\mu_i \) and the observed responses \(y_i \).

(b) Hence obtain an expression for the deviance of the model, involving only the fitted means \(\widehat{\mu}_i \) and the observed responses \(y_i \).