S_3-involution graphs

Michael Giudici
University of Western Australia

on joint work with Alice Devillers
An M_{11}-graph

Witt design $S(4, 5, 11)$: collection of 5-subsets (pentads) of an 11-set such that any 4-subset is contained in a unique pentad.

Automorphism group is the Mathieu group M_{11} which acts 4-transitively on the 11-set.
An M_{11}-graph

Witt design $S(4, 5, 11)$: collection of 5-subsets (pentads) of an 11-set such that any 4-subset is contained in a unique pentad.

Automorphism group is the Mathieu group M_{11} which acts 4-transitively on the 11-set.

Define a graph Σ

- vertices: 3-subsets of an 11-set
- adjacency: complement of union is a pentad.
M_{11} also has a 3-transitive action on a set of size 12.

Has an orbit \mathcal{O} of size 165 on the set of 4-subsets forming a $3 - (12, 4, 3)$ design.
Another definition

M_{11} also has a 3-transitive action on a set of size 12.

Has an orbit \mathcal{O} of size 165 on the set of 4-subsets forming a $3 - (12, 4, 3)$ design.

Theorem (Devillers, MG, Li, Praeger)

Σ is isomorphic to the graph defined as follows:

- **vertices:** elements of \mathcal{O}
- **adjacency:** intersection is a 3-subset

$J(12, 4)$ can be decomposed into 12 copies of Σ with the 12 copies transitively permuted by M_{12}.
A $\text{PSL}(2, 11)$-graph

$\text{PSL}(2, 11)$ has a 2-transitive action on 11 points.

Has two orbits on 3-subsets and these have lengths 55 and 110.

The orbit of length 55 forms a $2 - (11, 3, 3)$ design (Petersen design).
A $\text{PSL}(2, 11)$-graph

$\text{PSL}(2, 11)$ has a 2-transitive action on 11 points.

Has two orbits on 3-subsets and these have lengths 55 and 110.

The orbit of length 55 forms a $2 - (11, 3, 3)$ design (Petersen design).

Define a graph

- vertices: blocks of Petersen design
- adjacency: intersection is a 2-subset
An alternative definition

M_{11} has a unique conjugacy class of involutions.

An involution has 3 fixed points in action on 11-set and 4 fixed points in action on 12-set.
An alternative definition

M_{11} has a unique conjugacy class of involutions.

An involution has 3 fixed points in action on 11-set and 4 fixed points in action on 12-set.

The fixed point sets of two involutions are adjacent in Σ if and only if generate an S_3 with normaliser $S_3 \times S_3$.

Equivalent definition of Σ is:

- vertices: involutions of M_{11}
- adjacency: generate an S_3 with normaliser $S_3 \times S_3$.

The $PSL(2,11)$ graph has a similar definition.
An alternative definition

M_{11} has a unique conjugacy class of involutions.

An involution has 3 fixed points in action on 11-set and 4 fixed points in action on 12-set.

The fixed point sets of two involutions are adjacent in Σ if and only if generate an S_3 with normaliser $S_3 \times S_3$.

Equivalent definition of Σ is:

- vertices: involutions of M_{11}
- adjacency: generate an S_3 with normaliser $S_3 \times S_3$.

The $\text{PSL}(2, 11)$ graph has a similar definition.
Using this definition get a tower of graphs for the groups

$$A_5 < PSL(2, 11) < M_{11} < M_{12}$$

The graph for A_5 is the line graph of the Petersen graph.

The graph for M_{12} is the Johnson graph $J(12, 4)$.
In general

Given

- \(G \) a group
- \(X \) a set of involutions closed under conjugation
- \(S \) a set of \(S_3 \)-subgroups closed under conjugation
In general

Given

- G a group
- X a set of involutions closed under conjugation
- S a set of S_3-subgroups closed under conjugation

Define the S_3-involution graph $\Gamma(G, X, S)$

- vertices the elements of X
- $x \sim y$ if $\langle x, y \rangle \in S$
In general

Given

- G a group
- X a set of involutions closed under conjugation
- S a set of S_3-subgroups closed under conjugation

Define the S_3-involution graph $\Gamma(G, X, S)$

- vertices the elements of X
- $x \sim y$ if $\langle x, y \rangle \in S$

NB: The product of adjacent involutions has order three.
Reminiscent of:

- Fischer’s 3-transposition groups
- Coxeter graphs
- commuting involution graphs
Automorphisms

G acts by conjugation as a group of automorphisms

G-vertex-transitive if and only if X is single conjugacy class

G-arc-transitive if and only if S is a single conjugacy class

If $g \in \text{Aut}(G)$ fixes X and S then g induces automorphism of $\Gamma(G, X, S)$.

Full automorphism group can be much larger than G, eg $G = M_{12}$ and $\Gamma(G, X, S) = J(12, 4)$
Symmetric groups

\[G = S_n, \ X \text{ the class of transpositions} \]

\[S \text{ the class of } S_3\text{-subgroups with } n - 3 \text{ fixed points.} \]
Symmetric groups

\[G = S_n, \; X \text{ the class of transpositions} \]

\[S \text{ the class of } S_3\text{-subgroups with } n - 3 \text{ fixed points.} \]

\[X \text{ corresponds to the 2-subsets of } \{1, \ldots, n\} \]
Symmetric groups

\[G = S_n, \ X \text{ the class of transpositions} \]

\[S \text{ the class of } S_3\text{-subgroups with } n - 3 \text{ fixed points.} \]

\[X \text{ corresponds to the 2-subsets of } \{1, \ldots, n\} \]

Given \(x = (a, b) \) and \(y = (c, d) \),

\[\langle x, y \rangle \in S \text{ if and only if } \left| \{a, b\} \cap \{c, d\} \right| = 1 \]
Symmetric groups

\[G = S_n, \ X \text{ the class of transpositions} \]

\[S \text{ the class of } S_3\text{-subgroups with } n - 3 \text{ fixed points.} \]

\[X \text{ corresponds to the 2-subsets of } \{1, \ldots, n\} \]

Given \(x = (a, b) \) and \(y = (c, d) \),

\[\langle x, y \rangle \in S \text{ if and only if } |\{a, b\} \cap \{c, d\}| = 1 \]

Thus \(\Gamma(G, X, S) \cong J(n, 2) \).
M_{11} has unique class of involutions and they correspond to the 3-subsets of an 11-set.

Has two conjugacy classes of S_3-subgroups.

Already seen the graph obtained if we use one of the classes for adjacency.
M_{11} has unique class of involutions and they correspond to the 3-subsets of an 11-set.

Has two conjugacy classes of S_3-subgroups.

Already seen the graph obtained if we use one of the classes for adjacency.

The other class yields the Johnson graph $J(11, 3)$.
Complete graphs

\[G = \operatorname{AGL}(1, 3^n) = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in \operatorname{GF}(3^n), a \neq 0 \} \]

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in \operatorname{GF}(3^n) \} \).

Unique class \(S \) of \(S_3 \)-subgroups
Complete graphs

\[G = AGL(1, 3^n) = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in GF(3^n), a \neq 0 \} \]

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in GF(3^n) \} \).

Unique class \(S \) of \(S_3 \)-subgroups

\[t_{-1,b}t_{-1,c} = t_{1,c-b} \] has order three
Complete graphs

\[G = AGL(1, 3^n) = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in GF(3^n), a \neq 0 \}\]

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in GF(3^n) \} \).

Unique class \(S \) of \(S_3 \)-subgroups

\[t_{-1,b}t_{-1,c} = t_{1,c-b} \text{ has order three} \]

\[\Gamma(G, X, S) \cong K_{3^n} \]
Theorem

If $\Gamma(G, X, S)$ is the complete graph on X for some group G then $|X| = 3^n$ for some positive integer n.
Paley graphs

n even

\[G = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in \text{GF}(3^n), a = \square \neq 0 \} \]
\[\cong C_3^n \rtimes C_{(3^n-1)/2} \]

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in \text{GF}(3^n) \} \)
Paley graphs

n even

\[G = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in \text{GF}(3^n), \, a = \square \neq 0 \} \cong C_3^n \rtimes C_{(3^n-1)/2} \]

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in \text{GF}(3^n) \} \)

Two classes \(S_1, S_2 \) of \(S_3 \)-subgroups

\[\langle t_{-1,b}, t_{-1,c} \rangle \in S_1 \text{ iff } c - b = \square \]
Paley graphs

\(n \) even

\[
G = \{ t_{a,b} : x \mapsto ax + b \mid a, b \in \text{GF}(3^n), a = \square \neq 0 \}
\]

\(\cong C_3^n \rtimes C_{(3^n-1)/2} \)

Unique class of involutions \(X = \{ t_{-1,b} \mid b \in \text{GF}(3^n) \} \)

Two classes \(S_1, S_2 \) of \(S_3 \)-subgroups

\[
\langle t_{-1,b}, t_{-1,c} \rangle \in S_1 \text{ iff } c - b = \square
\]

\(\Gamma(G, X, S_1) \) is the Paley graph for \(\text{GF}(3^n) \).
Each $S \in \mathcal{S}$ contains three involutions and these form a triangle in $\Gamma(G, X, S)$.
Each $S \in \mathcal{S}$ contains three involutions and these form a triangle in $\Gamma(G, X, \mathcal{S})$.

These are not necessarily the only triangles,
Triangles

Each $S \in S$ contains three involutions and these form a triangle in $\Gamma(G, X, S)$.

These are not necessarily the only triangles, eg in S_4:
Triangles

Each $S \in S$ contains three involutions and these form a triangle in $\Gamma(G, X, S)$.

These are not necessarily the only triangles, eg in S_4:

Theorem

If no $S \in S$ is contained in a subgroup of G of the form $C_3^2 \rtimes C_2$ or $C_n^2 \rtimes S_3$, then the only triangles of $\Gamma(G, X, S)$ are those given by the subgroups of S.
$G = \text{PSL}(2, q)$

Unique conjugacy class of involutions

One or two conjugacy classes of S_3-subgroups but if two then fused in $\text{PGL}(2, q)$.

| $q \pmod{12}$ | $|X|$ | $|S|$ | valency |
|---------------|------|-----|--------|
| 4, 8 | $q^2 - 1$ | $|G|/6$ | q |
| 1 | $q(q+1)/2$ | $|G|/12$ | $(q-1)/2$ |
| 3 | $q(q-1)/2$ | 0 | |
| 5 | $q(q+1)/2$ | $|G|/6$ | $q-1$ |
| 7 | $q(q-1)/2$ | $|G|/6$ | $q+1$ |
| 9 | $q(q+1)/2$ | $|G|/6$ | $q-1$ |
| 11 | $q(q-1)/2$ | $|G|/12$ | $(q+1)/2$ |
Theorem

\[G = \text{PSL}(2, q) \text{ for } q \geq 4, \]
\[X \text{ the unique conjugacy class of involutions,} \]
\[S \text{ a conjugacy class of } S_3 \text{-subgroups.} \]

The size of the largest clique is

- \(3^e\) if \(q = 9^e\),
- \(4\) if \(q = 25^e\),
- \(3\) otherwise.
Theorem

\[G = \text{PSL}(2, q) \text{ for } q \geq 4, \]
\[X \] the unique conjugacy class of involutions,
\[S \] a conjugacy class of \(S_3 \)-subgroups.

The size of the largest clique is

- 3\(^e\) if \(q = 9^e \),
- 4 if \(q = 25^e \),
- 3 otherwise.

For \(q = 9^e \) the subgraphs induced on the parabolics \(C_3^{2e} \times C_{(9^e-1)/2} \) are Paley graphs.
Duality

The **dual graph** of $\Gamma(G, X, S)$ is the graph with

- vertices: S_3-triangles of $\Gamma(G, X, S)$
- adjacency: if share a vertex

Theorem

$\Gamma(PSL(2, q), X, S)$ is isomorphic to its dual graph if and only if $q = 11$ or 13.
Duality

The dual graph of $\Gamma(G, X, S)$ is the graph with

- vertices: S_3-triangles of $\Gamma(G, X, S)$
- adjacency: if share a vertex

Theorem

$\Gamma(\text{PSL}(2, q), X, S)$ is isomorphic to its dual graph if and only if $q = 11$ or 13.