Background

$G \leq \text{Sym}(\Omega)$

transitive if for all $\alpha, \beta \in \Omega$ there exists $g \in G$ such that $\alpha^g = \beta$.

2-transitive if G is transitive on the set of all distinct ordered pairs.

$\frac{1}{2}$-transitive if either G is transitive or all orbits of G have the same length $m > 1$.

$\frac{3}{2}$-transitive if it is transitive and G_α is $\frac{1}{2}$-transitive on $\Omega \setminus \{\alpha\}$.

For a transitive group G, we call the lengths of the orbits of G_α the subdegrees of G.
Examples

- Any 2-transitive group.
- Any Frobenius group with finite point stabilisers.
- Any finite normal subgroup of a 2-transitive group.
- $\text{PSL}(2, q)$, for q even, acting on $q(q - 1)/2$ points.
- A_7 or S_7 acting on 2-subsets.
Primitive groups

G is called **primitive** if there is no nontrivial partition of Ω preserved by G.

The structure of finite primitive groups is given by the O’Nan-Scott Theorem which classifies them into eight types.

Two important types:

- **almost simple:** $T \leq G \leq \text{Aut}(T)$, for some finite nonabelian simple group T.
- **affine:** $G \leq \text{AGL}(d, p)$ and contains all translations.
Burnside’s Theorem

Every 2-transitive group is primitive.

Burnside’s Theorem A finite 2-transitive group is either almost simple or affine.
$\frac{3}{2}$-transitive groups

Wielandt (1965): A finite $\frac{3}{2}$-transitive permutation group is either primitive or Frobenius.

Passman (1967-1969): Classified all finite soluble $\frac{3}{2}$-transitive permutation groups.

Theorem (BGLPS)

A finite primitive $\frac{3}{2}$-transitive group is either almost simple or affine.
Characterising the $\text{PSL}(2, q)$ examples:

Suppose that G is a finite 3_2-transitive group that is neither 2-transitive nor of affine type.

McDermott (1977): If $G_{\alpha, \beta} = C_2$ for all $\alpha, \beta \in \Omega$ then $G = \text{PSL}(2, 2^f)$.

Camina (1979): If $G_{\alpha, \beta}$ is a cyclic 2-group then $\text{soc}(G) = \text{PSL}(2, 2^f)$.

Zieschang (1992): If all two point stabilisers are conjugate then $\text{soc}(G) = \text{PSL}(2, 2^f)$.
An elementary observation

- G a transitive permutation group on Ω.
- r a prime dividing $|\Omega|$.

If G has a subdegree divisible by r then G is not $\frac{3}{2}$-transitive.

Problem A

Determine the groups of Lie type of characteristic p which have a primitive action with no subdegrees divisible by p.
A very useful lemma

Lemma

Let G be a finite permutation group with point stabiliser H and let $x \in H$ have order a power of p. If

$$|x^G| > |x^G \cap H|^2 - |x^G \cap H| + 1$$

then G has a subdegree divisible by p.
Solution to Problem A

Theorem (BGLPS)

Let G be a finite almost simple group, with socle L of Lie type of characteristic p, acting primitively on Ω such that p divides the order of a point stabiliser.

Then one of the following holds:

1. G has a subdegree divisible by p;
2. G is 2-transitive;
3. $L = \text{PSL}(2, 2^f)$ acting on $2^{f-1}(2^f - 1)$ points, $|G : L|$ odd;
4. $L = \text{PSU}(3, 5)$ acting on 50 points (subdegrees 1, 7, 42);
5. $L = \text{PSp}(4, 3)$ acting on 27 points (subdegrees 1, 10, 16);
6. $G = G_2(2)'$ acting on 36 points (subdegrees 1, 7, 7, 21).
Classification of almost simple examples

Theorem (BGLPS)

Let G be a finite almost simple $\frac{3}{2}$-transitive permutation group. Then one of the following holds:

1. G is 2-transitive.
2. $\text{soc}(G) = \text{PSL}(2, 2^f)$ acting on $2^{f-1}(2^f - 1)$ points and either $G = \text{soc}(G)$ or f is prime.
3. G is S_7 or A_7 acting on 2-subsets.
Affine examples

Here $G = \mathbb{Z}_p^d \rtimes G_0$ where G_0 is an irreducible subgroup of $GL(d, p)$ acting $\frac{1}{2}$-transitively on the set of nonzero vectors.

Passman (1969): determined all possibilities when G_0 imprimitive on vector space. All soluble.

If G_0 has an orbit of length divisible by p on vectors then it is not $\frac{1}{2}$-transitive.

GLPST: Determined all irreducible, primitive linear groups with no orbits of length divisible by p.
Theorem (GLPST)

If $G \leq AGL(d, p)$ is a $\frac{3}{2}$-transitive affine permutation group with point-stabiliser G_0 having order divisible by p, then one of the following holds:

(i) G is 2-transitive;

(ii) $G_0 \leq \Gamma L(1, p^d)$;

(iii) $SL(2, 5) \triangleleft G_0 \leq \Gamma L(2, 9) < GL(4, 3)$ and G has rank 3 with subdegrees 1, 40, 40.
Let G be an infinite $\frac{3}{2}$-transitive permutation group on Ω that is not 2-transitive.

All subdegrees are finite and the same size.

Example $G = \mathbb{R}^2 : \langle \tau \rangle$ where τ is a rotation of order n.

Wielandt’s proof that a finite imprimitive $\frac{3}{2}$-transitive group is Frobenius still holds if there is a system of imprimitivity with finite blocks.

Question: Is there an imprimitive $\frac{3}{2}$-transitive group that is not Frobenius?
Infinite primitive $\frac{3}{2}$-transitive groups

Primitive and all subdegrees finite implies Ω is countable.

Schlichting, Bergman-Lenstra: Primitive and list of subdegrees has finite upper bound implies finite stabilisers.

Simon Smith recently gave an O’Nan-Scott Theorem for primitive permutation groups whose set of subdegrees has a finite upper bound.
Infinite primitive $\frac{3}{2}$-transitive groups

Theorem

Let G be an infinite primitive $\frac{3}{2}$-transitive permutation group. Then either

- G is a countable almost simple group.
- $G = M : G_\alpha$ where $M = T^k$ for some countable simple group T, M acts regularly on Ω and G_α normalises no proper nontrivial subgroup of M.
Let $p > 10^{75}$ be a prime.

Then there exist simple groups T_p such that all nontrivial proper subgroups have order p. (Tarski–Ol’Shanskiĭ Monsters)

T_p acting on the set of right cosets of a subgroup of order p is primitive with all subdegrees equal to p.

Can also choose T_p such that it has an outer automorphism σ of order two normalising no proper nontrivial subgroup.

Let $G = T_p : \langle \sigma \rangle$ acting on the cosets of $\langle \sigma \rangle$. This is primitive with all subdegrees equal to 2.

Question: Are there infinite $\frac{3}{2}$-transitive groups that are not Frobenius?