Affine Reconstruction from Monocular Vision in the Presence of
A Symmetry Plane

D. Q. Huynh*
School of Information Technology
Murdoch University, Perth WA 6150, Australia
Email: d.huynh@murdoch.edu.au or du@it.murdoch.edu.au

Abstract

This paper reports a closed-form solution for reconstructing a scene up to an affine transformation from a single image in the presence of a symmetry plane. Unlike scene reconstruction in stereo vision, the affine reconstruction process discussed in this paper does not require any knowledge about camera parameters or camera orientation relative to the scene, so camera self-calibration is totally eliminated. By setting in the scene a plane mirror which creates lateral symmetric world points for an uncalibrated, perspective camera to capture, the linear equations involved in the reconstruction process can be derived from two sets of similar triangles. The affine reconstruction is relative to an arbitrary affine coordinated frame implicitly defined on the mirror plane. Also involved in the process are the estimation of the epipole and recovery of the image-to-mirror plane homography. Implementation on estimating the epipole is detailed. A real experiment is presented to demonstrate the reconstruction.

1. Introduction

Scene reconstruction from images captured by uncalibrated cameras has caught the attention of many Vision and Photogrammetry researchers. Research on camera self-calibration originated with Faugeras et al’s paper [3]. Since then, numerous research works on self-calibration and reconstruction have emerged. While Euclidean reconstruction contains all the information that we strive to achieve, affine structure has a fruitful amount of information that has been known to be useful in many Vision applications. In affine reconstruction, parallelism, ratio of regions on parallel planes, ratio of lengths of parallel lines are all preserved.
points and lines. Entities with a ‘ are virtual world or image points. Matrices are in upper case; scalars are in lower case.

2.1. The geometry

Let a mirror plane Π_m be placed in the scene. If $A \leftrightarrow A'$ is a pair of corresponding real and virtual world points in the scene then the symmetry of points about the mirror plane ensures that A and A' are equidistant from it (Fig. 1), i.e. the midpoint \bar{A} of the segment is on the mirror plane. Furthermore, the segment $\bar{AA'}$ is orthogonal to Π_m. The image points a and a' are the perspective projections of A and A' onto the image plane Π_1 under the optical centre O of the camera. Let A_m, and A'_m be, respectively, the intersection points of the rays OA and OA' with Π_m. A study of Fig. 1 reveals that A, A', A_m, A'_m, \bar{A}, O, a, and a' are coplanar in space.

![Figure 1. Geometry of a world point A with respect to the mirror plane Π_m and image plane Π_1.](image1.png)

Another set of coplanar world points are those on the mirror plane Π_m: A_m, A'_m, O_m, \bar{A}. Relative to an arbitrary 2D coordinate frame \mathcal{F}_m defined on Π_m, they can be expressed as 2-vectors and be referred to as a_m, a'_m, o_m, \bar{a}_m respectively.

2.2. An affine reconstruction algorithm

Construct the vector OO_m orthogonal to the mirror plane Π_m. Let d_m and d be, respectively, the distances of the perspective centre O and the world point A from Π_m (Fig. 2). Let $o_m = (o_x, o_y)\top$ be the coordinates of O_m relative to the arbitrary 2D coordinate frame \mathcal{F}_m. The world point $A = (A_x, A_y, A_z)\top$ has three unknown components: the first two components can be expressed relative to an affine coordinate frame \mathcal{F}_m and the last component A_z can be expressed as the distance d_m from Π_m. From the two sets of similar right triangles, OQ and OQ'_m, $OA'Q'$ and OQ'_mO_m, the following equations can be derived:

$$d_m (PA - o_m) = (d_m - d) (a_m - o_m)$$

$$d'_m (PA' - o_m) = (d_m + d) (a'_m - o_m)$$

where $P = [I \ 0]$ with I being the 2×2 identity matrix, so $PA = (A_x, A_y)\top$.

![Figure 2. Top view of the geometry of a world point A and the mirror and image planes.](image2.png)

Since relative to the \mathcal{F}_m coordinate frame PA and PA' have the same coordinates, (1) and (2) can be combined to eliminate A and A' and yield

$$d_m (a_m - a'_m) - d (a_m + a'_m) + 2d o_m = 0.$$

The unknown quantities in (3) are d, o_m, and d_m, provided that a_m and a'_m can be computed from other means. The total number of unknowns is therefore $n + 3$, where n is the number of pairs of corresponding real and virtual world points, each of which has an unknown distance d from the mirror plane Π_m that needs to be solved; the remaining 3 unknowns are: the o_x and o_y components of o_m, and the distance d_m of the perspective centre O to Π_m.

A close study of (3) reveals that multiplying d_m and d in the equation by an arbitrary scalar incurs no change to the equality. One can therefore conclude that d_m, and consequently the corresponding d value of each world point, can only be recovered up to scale. Dividing the equation through by d gives

$$\tilde{d} (a_m - a'_m) - (a_m + a'_m) + 2o_m = 0$$

where $\tilde{d} = d_m / d$.

The total number of unknowns that needs to be solved in (4) for n corresponding pairs of image points is $n + 2$. With two equations provided by each pair of corresponding real and virtual world points, the total number of equations available is $2n$.

Geometrically, the quantity $\tilde{d} \equiv 1/\tilde{d} = d/d_m$ has a more meaningful interpretation: It is the distance \tilde{d} of each world point being scaled by the factor $1/d_m$. The estimated \tilde{d}’s are now taken as the z-components of the reconstructed world points.
Having recovered the coordinates of \(\mathbf{o}_m \) and all the world points’ \(z \)-components up to scale, the next step is to compute their \(x \)- and \(y \)-components. Let \(\mathbf{A} = (A_x, A_y, A_z)^\top \) be the world point to be reconstructed. Then dividing (1) and (2) by \(d_m \) and rearranging yields

\[
\begin{bmatrix} A_x \\ A_y \\ \end{bmatrix} = \left(1 - \frac{d}{d_m} \right) (\mathbf{a}_m - \mathbf{o}_m) + \mathbf{o}_m \\
= \left(1 + \frac{d}{d_m} \right) (\mathbf{a}'_m - \mathbf{o}_m) + \mathbf{o}_m.
\]

(5)

Note that unlike the \(z \)-component \(A_z \) of \(\mathbf{A} \), the components \(A_x \) and \(A_y \) are recovered up to their exact scale with respect to the coordinate axes chosen for \(\mathcal{F}_m \).

The reconstruction described above is affine only if the 2D coordinate frame \(\mathcal{F}_m \) is affine. That is, if 4 arbitrary points on \(\Pi_m \) that form a rectangle or a parallelogram can be identified, then, by setting these 4 points to \((0, 0, 1)^\top, (1, 0, 1)^\top, (0, 1, 1)^\top, (1, 1, 1)^\top\), an affine frame \(\mathcal{F}_m \) is defined. There are two approaches that one can adopt: (1) Put explicit landmarks on the mirror plane to define this coordinate frame; (2) Identify in the image 4 coplanar world points (if any) whose orthogonal projections onto the mirror plane form a rectangle or parallelogram. Although the second approach requires the existence of 4 coplanar world points on the object that form an affine coordinate frame, the object itself does not need to be a polyhedron. This approach is adopted in the paper and will be discussed in Section 3.2.

The reconstruction procedure assumes that the coordinates of \(\mathbf{a}_m \) and \(\mathbf{a}'_m \) on \(\Pi_m \) are available from other means. While these points are not known a priori, their image projections are identical to \(\mathbf{a} \) and \(\mathbf{a}' \) of the real and virtual world points \(\mathbf{A} \) and \(\mathbf{A}' \). If the homography [14] between the image plane \(\Pi \) and the mirror plane \(\Pi_m \) is known then \(\mathbf{a}_m \) and \(\mathbf{a}'_m \) can be synthesised. The determination of this image-to-mirror homography and the affine frame \(\mathcal{F}_m \) will be outlined in Section 3.2.

3. The real/virtual correspondence problem

Since it is more convenient to express image points as homogeneous 3-vectors (by adding 1 to the third component), from here onward, image points and image lines are 3-vectors unless explicitly stated otherwise.

3.1. The epipole

For each pair of real and virtual image points, \(\mathbf{a}_i \leftrightarrow \mathbf{a}'_i \), the epipolar line joining \(\mathbf{a}_i \) and \(\mathbf{a}'_i \) is simply \(\mathbf{a}_i \times \mathbf{a}'_i \), i.e. the cross product of the homogeneous coordinates of the two image points. Ideally, the epipole \(\mathbf{e}_\infty \) satisfies \((\mathbf{a}_i \times \mathbf{a}'_i)^\top \mathbf{e}_\infty = 0 \), for all \(i \). In the presence of noise, the dot product above may not identically vanish and one must tackle the problem of optimally determining \(\mathbf{e}_\infty \). In this paper, we assume that the correspondences between the real and virtual image points have been identified, i.e. the real/virtual correspondence problem has been solved. We will focus on the recovery of the epipole, the determination of the image-to-mirror homography, and the final affine reconstruction.

3.2. Determining the image-to-mirror plane homography and \(\mathcal{F}_m \)

Given that the image points \(\mathbf{a}_i \leftrightarrow \mathbf{a}_i' \) of 4 corresponding pairs of real and virtual world points \(\mathbf{A}_i \leftrightarrow \mathbf{A}'_i \), for \(1 \leq i \leq 4 \), have been correctly identified and the epipole \(\mathbf{e}_\infty \) has been computed, the image projection \(\tilde{\mathbf{a}}_i \) of the midpoint \(\tilde{\mathbf{A}}_i \) of the world line segment \(\mathbf{A}_i, \mathbf{A}'_i \) can be determined from the cross ratio. Since the cross ratio \(\{\mathbf{a}_i, \mathbf{a}_i'; \tilde{\mathbf{a}}_i, \mathbf{e}_\infty \} \) is known to have the value \(-1\) (see [14]), one can deduce the image coordinates \(\tilde{\mathbf{a}}_i \) that corresponds to \(\tilde{\mathbf{A}}_i \) on the mirror plane. If the world points \(\{\mathbf{A}_i | 1 \leq i \leq 4 \} \) form a rectangle or parallelogram then the midpoints \(\{\tilde{\mathbf{A}}_i | 1 \leq i \leq 4 \} \) on \(\Pi_m \) define an affine frame \(\mathcal{F}_m \). The \(3 \times 3 \) non-singular matrix \(H \) that defines the image-to-mirror homography can then be determined from

\[
H \tilde{\mathbf{a}}_i \sim \tilde{\mathbf{A}}_i, \quad 1 \leq i \leq 4
\]

(6)

where \(\sim \) denotes equality up to scale.

If explicit landmarks on the mirror plane are used and their image projections are identified then the homography \(H \) can be directly computed without knowing the epipole.

3.3. The epipolar constraint

Once the epipole has been estimated, given a real (or virtual) image point \(\mathbf{p} \), the corresponding virtual (or real) image point \(\mathbf{p}' \) must be on the line defined by \(\mathbf{p} \times \mathbf{e}_\infty \). This is the epipolar line that constrains the search space for the corresponding virtual (or real) image point \(\mathbf{p}' \).

Proposition 1. Let the pencil of planes with axis at \(\mathbf{O} \mathbf{O}_m \) be denoted by the symbol pencil(\(\mathbf{O} \mathbf{O}_m \)). Then for any corresponding pair of real and virtual world points \(\mathbf{A} \leftrightarrow \mathbf{A}' \) there exists a plane \(\Pi \) in pencil(\(\mathbf{O} \mathbf{O}_m \)) such that \(\mathbf{A}, \mathbf{A}' \in \Pi \).

Proof:

The vector \(\mathbf{O} \mathbf{O}_m \) is constructed to be orthogonal to \(\Pi_m \). As the line segment \(\mathbf{A} \mathbf{A}' \) is also orthogonal to \(\Pi_m \), it follows immediately that the points \(\mathbf{A}, \mathbf{A}', \mathbf{O}, \mathbf{O}_m \) are coplanar in space. Since \(\mathbf{A} \) and \(\mathbf{A}' \) are arbitrarily chosen, every plane determined by \(\mathbf{O} \) and any corresponding pair of real and virtual world points must contain the point \(\mathbf{O}_m \). All these planes thus form a pencil with axis at \(\mathbf{O} \mathbf{O}_m \). The plane in the pencil that contains \(\mathbf{A} \) and \(\mathbf{A}' \) is known as the epipolar plane of \(\mathbf{A} \) (or \(\mathbf{A}' \)). Fig. 3 shows the geometry involved. \(\square \)
The epipole has been computed, the unnormalisation procedure is performed in Π_Λ is the epipolar plane of Λ (or Λ').

Proposition 2. The axis $\mathbf{O}O_m$ meets Π_i in the epipole e_∞.

Proof:
Let $\mathbf{0}$ be the intersection point of line segment $\mathbf{O}O_m$ with the image plane Π_i (Fig. 3). From Proposition 1, all the epipolar planes intersect at the axis $\mathbf{O}O_m$. These epipolar planes intersect Π_i at the epipolar lines, which are concurrent at the epipole e_∞. It follows that $\mathbf{0}$ and e_∞ must coincide. Thus, the axis $\mathbf{O}O_m$ meets Π_i at the epipole e_∞. □

3.4. Computing the epipole

Since getting a good estimate of the epipole is essential for our affine reconstruction, we will explain at length in this subsection the various approaches that we have implemented.

Normalisation

In computing the epipole line $\mathbf{I_i} = \mathbf{\hat{I}_i} + \Delta \mathbf{I_i}$, for $1 \leq i \leq n$, be the observed homogeneous coordinates of the epipolar lines, with $\hat{\mathbf{I_i}}$ being the true, unknown line coordinates and $\Delta \mathbf{I_i}$, the noise component involved. If $\Lambda_{\mathbf{a}_i}$ and $\Lambda'_{\mathbf{a}_i}$ are the covariance matrices of the corresponding image points \mathbf{a}_i and $\mathbf{a'}_i$, then the first order approximation of the covariance matrix (see [1] for a general discussion) of $\Delta \mathbf{I_i}$ is simply

$$\Lambda_{\mathbf{I_i}} = P_i \left([D\mathbf{a}_i]_x D\Lambda_{\mathbf{a}_i} D^T [D\mathbf{a'}_i]_x + [D\mathbf{a'}_i]_x D\Lambda_{\mathbf{a}_i} D^T [D\mathbf{a}_i]_x \right) P_i^T$$

where $[.]_x$ denotes the skew symmetric matrix of the vector concerned and $P_i = I - \mathbf{1}_i \mathbf{1}_i^T$, with I being the 3×3 identity matrix. Assuming that the noise $\Delta \mathbf{I_i}$ is Gaussian of 0 mean, then maximising the likelihood function of the $\Delta \mathbf{I_i}$’s is equivalent to minimising the quantity $\sum_{i=1}^n \Delta \mathbf{I_i}_x \Lambda_{\mathbf{I_i}}^{-1} \Delta \mathbf{I_i}$ subject to the linearised constraints $\mathbf{I_i}_x e_\infty = \Delta \mathbf{I_i}_x e_\infty = 0$, for $1 \leq i \leq n$, where $\Lambda_{\mathbf{I_i}}^{-1}$ denotes the rank-2 generalised inverse of $\Lambda_{\mathbf{I_i}}$. The noise terms $\Delta \mathbf{I_i}$’s can be eliminated from the system to yield a nonlinear unconstrained minimisation system given as

$$\min_{e_\infty} J = \sum_{i=1}^n \frac{(\mathbf{I_i}_x e_\infty)^2}{\Lambda_{\mathbf{I_i}} e_\infty^2}.$$ \hspace{1cm} (8)

The common approach to take from here is to replace the denominator term with a constant term w_i, often referred to as the *weighting factor* so that the least-squares approach can be adopted. That is,

$$\min_{e_\infty} J = \sum_{i=1}^n \frac{(\mathbf{I_i}_x e_\infty)^2}{w_i}.$$ \hspace{1cm} (9)
Unfortunately, the solution that minimises J in (9) is known to be not optimal to the original nonlinear problem given in (8), as is now widely known in the literature. Due to the space limit, we cannot cite all the known references. Interested reader is referred to [16, 10] for a similar problem in estimating the fundamental matrix.

Method 2: Generalised eigenvector

The generalised eigenvector method described in [8] is investigated and incorporated into our method is some modification that has shown to improve the estimate of the epipole in hundreds of conducted simulations (not reported here). The main idea is outlined below.

The (weighted) moment matrix M involved in our least-squares problem in (9) is defined as $\frac{1}{n} \sum_{i=1}^{n} I_i d_i^2 / w_i$. Since each I_i that constitutes the moment matrix M can be decomposed into $I_i + \Delta I_i$, matrix M can be written as the sum of two matrices: $M = \tilde{M} + e^2 \Delta M$, where $\tilde{M} = \frac{1}{n} \sum_{i=1}^{n} I_i d_i^2 / w_i$ and $\Delta M = \frac{1}{n} \sum_{i=1}^{n} \Delta I_i / w_i$. Here, we assume that the covariance matrix Λ_k estimated in (7) is equal to the true covariance matrix of ΔI_i up to an unknown scale factor e^2 (the noise level). Defining

$$\tilde{M} \equiv M - e^2 \Delta M$$

gives $E(\tilde{M}) = \tilde{M}$, where $E(\cdot)$ denotes the expected value. That is, \tilde{M} is an unbiased estimator of \tilde{M}. This is a generalised eigenvector problem, with the unknown noise level e^2, as discussed in [8], being chosen as the smallest generalised eigenvalue. The epipole is then estimated as the corresponding generalised eigenvector.

The modification that we apply to the above method is based on the following observation: the definition of M is determined by the weighting factors w_i’s, which may not be optimal to start with. Since the weighting factors w_i’s can be computed once a reasonably good estimate of the epipole is known, a new copy of matrices M and ΔM, based on the new weighting factors w_i’s, should be used. Our simulations show that this modification improves the epipole estimation and, on average, this modified method is comparable to the nonlinear minimisation that will be described later. The procedure for Method 2 is given below:

1. Define each weighting factor w_i in (9) as $\text{trace}(\Lambda_k)$. Compute M and ΔM.
2. Compute the smallest generalised eigenvalue λ such that $M - \lambda \Delta M$ is singular. Let \hat{e} be the corresponding generalised eigenvector.
3. Recompute each weighting factor w_i as $\hat{e}^\top \Lambda_k \hat{e}$. Reconstruct M and ΔM.
4. Redo step 2 above. Let e^2 be the smallest generalised eigenvalue. The epipole \hat{e}_∞ is estimated as the corresponding eigenvector.

Routines for generalised eigendecomposition can be found in most Mathematics software libraries. In Matlab, the qz function does the job. We note that in some odd cases both e^2 and \hat{e}_∞ can be complex; however, our simulations show that the imaginary components of these two entities are far from significance and can be ignored.

Finally, the covariance matrix of the estimated \hat{e}_∞ is defined as (see [8] for derivation)

$$\Lambda_{\hat{e}_\infty} = \frac{e^2}{n} (P \hat{M} P^\top)^{-1}$$

where $P = \text{diag}(1, 1, 0)$. We call this covariance matrix $\Lambda_{\hat{e}_\infty}^{(2)}$.

Method 3: Nonlinear minimisation

This method targets directly at the nonlinear problem given in (8). Given that an initial estimate of the epipole can be obtained from Method 1, our objective is to refine this estimate by minimising the nonlinear system of equations. Again, most standard Mathematics software libraries provide routines to do the job. In this paper, we use the Matlab `fminunc` function whose minimisation algorithm is based on the interior-reflective Newton method. We set all the appropriate options so that the user defined gradient and Hessian matrix G of the residual J are used in the minimisation procedure. The inverse of the Hessian matrix G at the estimated \hat{e}_∞ is taken to be the covariance matrix of \hat{e}_∞, i.e. $\Lambda_{\hat{e}_\infty} = (PGP^\top)^{-1}$, where P is given in (10). We call this covariance matrix $\Lambda_{\hat{e}_\infty}^{(3)}$.

We note that Propositions 1 and 2 imply that $e_\infty \sim H^{-1} [o_x, o_y, 1]^\top$. Thus, if the image-to-mirror homography is known because explicit landmarks are used, then one can compare the epipoles obtained from these three methods with that produced by the inverse homography.

4. Experiment

The affine reconstruction algorithm and the computation for the epipole described have been implemented in Matlab. One of the conducted experiments is reported here.

Fig. 4 shows the image of a toy. The image has 480×640 pixels and was taken with a Casio QV-100 hand-held digital camera. Superimposed onto the image are the 48 pairs of corners manually detected and, to avoid crowedness, the epipolar line for every 7th corresponding pair of real and virtual image points. The landmarks on the mirror are for an earlier version of our reconstruction algorithm and are not used in this paper.

The affine coordinate frame \mathcal{F}_m was defined by manually selecting 4 pairs of image points whose world points are known to form a rectangle. The coordinates of the epipole computed by the 3 described methods are shown graphically
in Fig. 5 and numerically in Table 1. If the epipolar lines are parallel then the estimated epipole from any of these methods will have its third component insignificant, signifying that the epipole is in the ideal plane. For Methods 2 and 3, the covariance matrices $\Lambda_{\mathbf{e}_1}$ and $\Lambda_{\mathbf{e}_2}$ of all corresponding points were set to diag$(1, 1, 0)$, based on the assumption that the image noise is independent, isotropic, and Gaussian. The covariance matrix Λ_k was then estimated using formula (7). The residuals \mathbf{J} for both methods were estimated to 45.84, which is well below the 99% χ^2 value with $(n-2)$ degrees of freedom. The noise level σ^2 was estimated to 0.69 from Method 2. The confidence ellipses of the estimated \mathbf{e}_∞ from these methods are shown in Fig. 5, using the estimated covariance matrices $\Lambda^{(2)}_{\mathbf{e}_\infty}$ and $\Lambda^{(3)}_{\mathbf{e}_\infty}$.

![Figure 5. The epipole estimated from the three methods and the corrected epipolar lines. (a) The rectangular box is the boundary of the image. (b) A magnified portion of (a) showing the two confidence ellipses centred at the epipoles computed by Methods 2 and 3.](image)

The two confidence ellipses are almost concentric in this experiment because the epipoles from Methods 2 and 3 are almost identical. However, the confidence ellipse from Method 3 is smaller (dashed black line) than that from Method 2 (solid red line). The reason is that, when differentiating \mathbf{J} of (8) with respect to \mathbf{e}_∞ for Method 3, the squared term in the numerator becomes a scale factor of 2 for the gradient and the Hessian matrix. Since this scale factor has no effect on finding the minimum in the iteration process, the common strategy is to save computation time by discarding it. In our implementation for Method 3, however, this scale factor was retained. So our Hessian matrix is twice as large and $\Lambda^{(3)}_{\mathbf{e}_\infty}$, being the inverse Hessian, is twice as small. Taking into account the estimated noise level σ^2 that Method 2 uses in (10) for rescaling each Λ_k, we found the following relationship between $\Lambda^{(2)}_{\mathbf{e}_\infty}$ and $\Lambda^{(3)}_{\mathbf{e}_\infty}$ that explains the size difference of the two confidence ellipses: $\Lambda^{(2)}_{\mathbf{e}_\infty} \approx 2\sigma^2 \Lambda^{(3)}_{\mathbf{e}_\infty}$ (agreement to the first 3 to 4 decimal places). A conclusion that one can draw from here is that it is not meaningful to talk about the size of a confidence ellipse unless all the factors that determine this number are well justified. We also note that while both \mathbf{e}_∞ and $\alpha\mathbf{e}_\infty$, for any non-zero scalar α, are solutions to (8) and give the same residual, α plays the role of a scale factor to the Hessian matrix. To be consistent with Methods 1 and 2, we scaled the epipole in Method 3 to unit length.

<table>
<thead>
<tr>
<th>Method</th>
<th>Estimated epipole (pixels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2529.51, -592.84)</td>
</tr>
<tr>
<td>2</td>
<td>(2538.73, -596.33)</td>
</tr>
<tr>
<td>3</td>
<td>(2539.00, -596.42)</td>
</tr>
</tbody>
</table>

Table 1. The coordinates of \mathbf{e}_∞ computed from the three methods.

![Figure 6. Affine reconstruction of the toy.](image)

In our simulations, the estimates of the epipoles from Methods 2 and 3 were closer to the true epipole than Method 1. This finding is consistent with Luong and Faugeras’ [10] report that the nonlinear method is more robust than the linear method in computing the fundamental matrix. Although the difference between the estimates of the epipole from Methods 2 and 3 is insignificant, we have chosen the result from Method 3 for subsequent computation and affine reconstruction. The image coordinates of the midpoints of
The affine reconstruction reported in this paper is relative to an arbitrary affine coordinate frame defined on the mirror plane Π_m via the image-to-mirror homography. This is analogous to Irani et al [7] and Weinshall et al’s [15] scene reconstruction relative to a floor plane. In particular, their identification of parallel lines on the floor plane for height reconstruction relative to a floor plane. In particular, their identification of parallel lines on the object and then transferred to the mirror plane Π_m using the cross ratios of the corresponding points with the estimated epipole.

Occlusion and applications

In stereo vision, the occlusion problem refers to the situation where some prominent features that need to be reconstructed are not visible to both cameras; in a camera/mirror system, this refers to the situation where some features are not visible to both the camera and the mirror. Our conducted experiments show that occlusion is minimised when the optical axis of the camera is orthogonal or near orthogonal to the mirror plane normal. While the occlusion problem may be viewed as a drawback of a camera/mirror system, many industrial applications have in fact utilised multiple mirrors to uncover occluded regions of the imaged objects [11]. All these early camera/mirror systems (e.g. [9, 11]) that we found in the literature had the camera explicitly calibrated for Euclidean reconstruction. More recent camera/mirror systems see the inclusion of ellipsoidal, hyperboloidal, and paraboloidal mirrors, e.g. [12]. Interestingly, Nene and Nayar’s [12] camera/mirror systems capture two mirror reflections of the scene for analysis while the actual 3D scene is outside the field of view of the camera.

6. Conclusion

We have presented an affine reconstruction method from a single image using the real and virtual corresponding image points created by a plane mirror. We have also given a thorough treatment to the estimation of the epipole that is essential to the reconstruction method. We have demonstrated the reconstruction result on a real image.