Fast Segmentation of Multiple Motions

Reza Hoseinnezhad, Ba-Ngu Vo, David Suter

1: The University of Melbourne, Australia
2: The University of Adelaide, Australia

Abstract: A guided sampling method for robust segmentation of multiple motions is introduced. It is substantially faster than random sampling as it effectively makes use of the spatial proximity of the points belonging to each motion. A fast high-breakdown robust estimator called Guided-LKS (GLKS) is devised using the guided search to minimize the \(k \)-th order statistics of squared distances. A number of experiments on homography estimation problems are presented. They involve up to eight motions and benchmark the performance of GLKS estimator in comparison to a number of state of the art robust estimators. The results show that while GLKS performs similar to other estimators in terms of segmentation accuracy, it significantly outperforms them in terms of computation time. The fast convergence and high breakdown point of GLKS make this estimator an outstanding choice for real-time estimation and segmentation of multiple motions.

Keywords: robust estimation, motion segmentation, fundamental matrix, homography

1. Introduction

Solving parametric motion segmentation problems involves robust estimation in a 4D parameter space for homography and a 7D or 8D parameter space for fundamental matrix models. In the presence of multiple motions, a small ratio of data points belong to each single motion. Therefore, high breakdown robust estimators need to be employed. Since the introduction of RANSAC [1], several high breakdown robust estimators have been specially designed to solve computer vision problems. Some recent examples include MSSE [2], ASSC [3], MLESAC [4], pbM-estimator [5], HBM [6] and FLKS [7]. All such estimators include three main steps: optimization, segmentation and refinement. The optimization step involves searching the parameter space to find an initial estimate that optimizes the objective function of the estimator. In the segmentation step, an inlier-outlier dichotomy is extracted using the parameter estimate returned by optimization. The parameter estimate is then refined in the final step by fitting the model to the extracted inliers using a maximum likelihood estimator e.g. total least-squares.

Most high breakdown estimators use random sampling for the optimization search. Random sampling is a random search scheme in the sample space for an acceptable \(p \)-tuple (also called elemental subset or random sample) that results in a parameter estimate with an optimal (or close to optimal) objective function value. A \(p \)-tuple is a subset of \(p \) data samples (\(p \) denotes the dimension of parameter space) that defines a full rank system of equations from which a model candidate can be computed. If the number of \(p \)-tuples randomly selected is \(N \), then with a probability of:

\[
P_{\text{success}} = 1 - \left[1 - (1 - \epsilon')^p \right]^N\tag{1}
\]

at least one of them is a good \(p \)-tuple (i.e. all its samples belong to the inlier structure), where \(\epsilon' \) is the ratio of outliers. Thus, for a given success probability \(p_{\text{success}} \), at least:

\[
N = \left\lceil \frac{\log(1 - P_{\text{success}})}{\log(1 - (1 - \epsilon')^p)} \right\rceil\tag{2}
\]

\(p \)-tuples should be randomly examined where \([., .]\) means rounding up to the next integer. When the ratio of inliers to each motion is small, the number of random \(p \)-tuples given by (2) is substantial and the computational load of segmentation is too high for real-time (or near real-time) applications [6, 8, 9]. For instance, in case of having eight homography motions with almost equal number of matching points and 10\% mismatches, at least 28,748 random 4-tuples are required to ensure 99\% success probability. The computational cost is higher in case of general motions modeled by eight fundamental matrices, requiring at least 20,191,937 random 7-tuples.

In this paper, we introduce a new a guided sampling approach that makes use of the spatial proximity of the points belonging to each motion. This method can be used to optimize the cost function of many estimators, and it requires far less random \(p \)-tuples (compared to random sampling) in case of parametric segmentation of multiple motions. Using our optimization search to minimize the \(k \)-th order statistics of squared distances, we develop a guided estimator called Guided Least \(k \)-th order Statistics in this paper (GLKS for short). Our experiments show that in terms of estimation error, GLKS performs similar to state of the art high breakdown robust estimators, but it runs substantially faster when segmentation of several motions is involved.

2. Related Work

Tordoff and Murray [10] have tackled the computational cost issues of random sampling by devising a guided sam-
The main reason for the large number of random samples (points belonging to structures other than the target) constitutes the ratio of segmentation is usually small. In robust statistical terms, SIFT [15], the ratio of mismatches in parametric motion with sophisticated feature matching techniques such as tuples for a given success probability.

Indeed, a theoretical stopping criterion is formulated and needs to be tuned offline by trial-and-error. A number of modified versions of RANSAC have also appeared in the computer vision literature. Some recent examples include LO-RANSAC [12], randomized RANSAC [13] and BEEM [14]. These methods follow RANSAC in that they assume the availability of a scale (or error threshold) to determine the inliers for each hypothetical fit. Such a threshold is not always available. For instance, in motion estimation, the scale of noise mainly depends on the point matching techniques utilized to find corresponding points. In this paper, we are interested only in estimators that work without any knowledge of the scale of measurement noise. Indeed, in many such estimators, the scale is either estimated within the estimation procedure or can be separately calculated upon its completion.

Our guided sampling method requires a small number of random samples – far less than the theoretical number given by Eq. (2). The search process does not need the scale of noise or any other threshold to determine inliers. Indeed, a theoretical stopping criterion is formulated and used to determine the minimum required number of \(p \)-tuples for a given success probability.

3. Guided sampling for motion segmentation

With sophisticated feature matching techniques such as SIFT [15], the ratio of mismatches in parametric motion segmentation is usually small. In robust statistical terms, the ratio of gross outliers are small, but pseudo outliers (points belonging to structures other than the target) constitute a large portion of data if several moving objects exist. The main reason for the large number of random samples

is that in Eq. (2) many \(p \)-tuples include points from different structures and are simply discarded because they are not good samples. We believe that there are information in those \(p \)-tuples that can be utilized to effectively direct the search toward the optimum point of the cost function.

The fit given by a so-called bad sample usually passes through the structures which contribute at least one point to the \(p \)-tuple. Fig. 1 shows a 2D case. Using the fit given by the two points marked by \(\bigcirc \), an inlier-outlier dichotomy specifies a number of points as inliers to the fit (the black points in Fig. 1). Those inliers belong to different structures, however, in motion segmentation, the points belonging to each structure are spatially close to each other and can be separately clustered from the others. This statement can be violated if there are objects occluding each other, but the number of simultaneously occluding objects is always less than the total number of motions.

It is noteworthy that should the scale of noise be very large, the points grouped in the largest cluster may be closely spaced and the effect of noise may be amplified which may lead to poor results of resampling from the cluster. As it is shown in Fig. 1 (see the magnified section in the right side of the figure) and through our simulation results involving homography estimation, resampling from the largest cluster usually results in an acceptable \(p \)-tuple.

Our suggested guided sampling is shown as a schematic diagram in Fig. 2. It comprises two levels of nested random sampling. First, \(n_1 \) random \(p \)-tuples are chosen. Each \(p \)-tuple corresponds to a parameter estimate for which an inlier-outlier dichotomy is computed. The inliers are then clustered into separate groups of data points and the largest group is found. If the group contains sufficient data points, then in an inner level of random sampling, \(n_2 \) random \(p \)-tuples are selected from the points in the group. The total number of random samples will be no more than \(N = n_1 n_2 \). For a given \(n_1 \) and \(n_2 \), the probability of having at least one “good” \(p \)-tuple is computed as follows.

Each of the \(n_1 \) random \(p \)-tuples in the first round of sampling contains \(p \) correct matches (though belonging to different motions) with a probability of \((1 - \epsilon)^p \) where \(\epsilon \) is the
Such a p-tuple corresponds to a fit and some inliers. The inliers are clustered into groups and the largest group is selected for a second round of random sampling. If at most n_{occ} objects can be simultaneously occluding each other, and in the worst scenario they contain an equal number of matching points in the data (the smallest possible ratio of inliers), each of the n_{occ} random samples selected in the second round will be a good sample (with all points belonging to one motion) with a probability of $\frac{1}{n_{occ}}$. Therefore, the probability of having at least one good sample in the second round is given by:

$$P_2 = 1 - \left[1 - \left(\frac{1}{n_{occ}} \right)^p \right]^{n_2}.$$ \hspace{1cm} (3)

The overall success probability is then given by:

$$P_{success} = 1 - [1 - (1 - \epsilon)^p P_2]^{n_1} = 1 - \left[1 - (1 - \epsilon)^p \left(1 - \left[1 - \left(\frac{1}{n_{occ}} \right)^p \right]^{n_2} \right) \right]^{n_1}$$ \hspace{1cm} (4)

and for a given n_2 and success probability, the minimum number of random samples required to be examined throughout the search is:

$$N = n_2 n_1 \log(1 - P_{success}) \log(1 - (1 - (1 - \epsilon)^p)^{n_2})$$ \hspace{1cm} (5)

In order to demonstrate the reduction of number of samples compared to the traditional random sampling, we have plotted the number of samples given by (5) versus the ratio of mismatches, compared with the number of random samples required by RANSAC-based methods given by (2) for several number of motions. Figures 3(a) and 3(b) show the plots for homography ($p = 4$) and fundamental matrix ($p = 7$) estimation. In both cases, it is assumed that no more than two moving objects can occlude each other ($n_{occ} = 2$). Noting the logarithmic scale on vertical axes, the plots show drastic reductions in the number of random samples, especially in cases where numerous motions are involved.

Remark 1. The above results are independent of the clustering technique used in the method, and any of the modern clustering methods can be employed. In our simulations we have used the Mean Shift method [16]. The mean shift algorithm is a nonparametric clustering technique which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters.

Remark 2. As it was mentioned before, only a sufficiently large group of points are subjected to a second round of sampling and if no such group results from clustering, the optimization procedure simply skips to process the next p-tuple of the first round of random sampling. In practice, a minimum size for the structure is assumed available (denoted by k_{\min}) and a group is considered sufficiently large if it contains at least k_{\min} data points.

Remark 3. In deriving the formulas (4) and (5), we have assumed that for any of the n_1 random samples that contains no mismatches, clustering of the inliers to the fit returned by the p-tuple will result in at least one sufficiently large group. It is noted that for some random samples that include marginal points on the edge of structures, this condition may not be satisfied, but we believe that such
marginal points constitute a small fraction of points. Indeed, the inaccuracy can be compensated for by treating such points like mismatches via increasing the ratio ϵ in Eq. (5). It is important to note that in practice, the actual ratio of mismatches is small (using a modern matching technique such as SIFT [15]) and despite the above mentioned addition, a relatively small ϵ will be practically sound in most applications.

4. Simulation Results

To realize a high breakdown robust estimation scheme, we have used our guiding sampling to optimize the k-th order statistics of the squared distances (also called “squared residuals” in robust statistics literature). We call the complete estimator as Guided Least k-th order Statistics or GLKS for short. In a number of experiments, we have compared the performance of GLKS with MSSE [2], Adaptive Scale Sample Consensus (ASSC) estimator [3] and High-Breakdown M-estimator (HBM) [6]. For a given homography matrix $H = [h_{ij}]$, the following two constraints relate each pair of corresponding points $(x_i, y_i), (x'_i, y'_i)$:

$$h_{2i}x_i + h_{12}y_i + h_{13} - h_{31}x'_i - h_{32}y'_i - h_{33}x'_i = 0$$

$$h_{2i}x_i + h_{22}y_i + h_{23} - h_{31}x'_i - h_{32}y'_i - h_{33}y'_i = 0$$

(6)

If the measurements $[x_i, y_i, x'_i, y'_i]^T$ are corrupted with noise, first order approximations to the perpendicular distances of the point $[x_i, y_i, x'_i, y'_i]^T$ from the two 6D manifolds defined by Eq. (6) – similar to the Sampson distance [17] – are given by Eqs. (7) and (8) and we use the distance:

$$d_i = \sqrt{(d'_i + d''_i)/2}$$

(9)

for segmentation. When the measurement noise is i.i.d. and distributed according to $\mathcal{N}(0, \sigma^2)$, the squared distances $\{d_i^2\}$ are distributed according to $\sigma^2\chi^2_2(n)$ and 99.4% of the distances are smaller than 4σ.

To obtain an inlier-outlier dichotomy for a given parameter estimate (the segmentation step within GLKS) we have employed the specific routine suggested by Bab-Hadiashar and Suter within the Modified Selective Scale Estimator (MSSE) [2]. The procedure is described as follows. Having a set of distances d_1, \ldots, d_n, the distances are sorted in ascending order and the following unbiased scale estimates are computed:

$$\hat{\sigma}_k = \left[\sum_{i=1}^{k} d_{i,n}^2/(k - p)\right]^{1/2}$$

(10)

where k_{min} is a known lower bound for the number of matches in a single motion and $d_{i,n}$ denotes the i-th sorted distance. Then the smallest index k is found for which $d_{k+1,n} > 4\hat{\sigma}_k$. Finally, an inlier-outlier dichotomy is obtained by labeling all the points associated with distances $\{d_1, \ldots, d_{k'}, n\}$ as inliers and the rest as outliers. This segmentation method has been chosen because it has been shown to have the best performance in terms of consistency [18] and finite sample bias [19].
Our experiments involve segmentation of 4 to 8 homography motions. Each experiment includes 100 runs, each involving randomly generated homography motions for 4 to 8 objects which appear as squares in image 1 and evolve to a generally irregular quadrilateral in image 2. For each motion, 100 correct matches are found and the pixel coordinates are synthetically corrupted with noise. Those points as well as a total of 50 random mismatches are taken as measurements. A sample of the measurements generated in an experiment involving 6 motions is shown in Fig. 4.

In each experiment, the measurements are utilized by a robust motion segmentation method and two quantities are recorded: the processing time taken by the method for segmentation of the first motion, and the number of matches computed for that motion. The number of samples for each method and number of motions are averaged over the 100 runs, and the results shown in Fig. 5. It is observed that in terms of segmentation accuracy, the performance of GLKS is similar to other methods examined in the experiments.

Figure 5 shows the average computation times for each method plotted versus the number of motions involved. It is observed that the computation time of GLKS (the number of required random samples) does not vary with the number of motions. The computation time of other estimators substantially increase with the number of motions because the outlier ratio ϵ' in Eq. (2) increases. Quantitatively, the computation time of GLKS is observed to be 10 to 1000 times faster than other methods. The computation advantage gained via using GLKS is especially substantial when numerous motions exist.

5. Conclusions

A guided sampling method is introduced that is substantially faster than random sampling. In its two-level nested search scheme, our method exploits the spatial proximity of the points belonging to each motion. A new high-breakdown robust estimator, called GLKS, uses our guided search to minimize the k-th order statistics of squared distances. Our homography estimation experiments involving synthetic data which involve up to eight motions show that while GLKS performs similar to other estimators in terms of segmentation accuracy, it is substantially faster. The advantage of using GLKS is more significant when numerous motions are to be estimated. The fast convergence and high breakdown point of GLKS make this estimator an outstanding choice for real-time estimation and segmentation of multiple motions.

Acknowledgement

This research was supported by Australian Research Council through the Discovery grant number DP0880553.
References

