Summary of Transformations

We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction)
 $$y = f(x) \pm d.$$

2. Horizontal Translation (in the x–direction)
 $$y = f(x \pm c).$$

3. Dilation on the y–axis
 $$y = af(x), \ SF a.$$

4. Reflexion on the x–axis
 $$y = -f(x).$$

5. Reflexion on the y–axis
 $$y = f(-x).$$

6. Dilation on the x–axis
 $$y = f(bx), \ SF \frac{1}{b}.$$
Summary of Transformations

We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
Summary of Transformations

We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
2. Horizontal Translation (in the x–direction) $y = f(x \pm c)$.
We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
2. Horizontal Translation (in the x–direction) $y = f(x \pm c)$.
3. Dilation on the y–axis $y = af(x)$, SF a.
Summary of Transformations

We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) \(y = f(x) \pm d \).
2. Horizontal Translation (in the x–direction) \(y = f(x \pm c) \).
3. Dilation on the y–axis \(y = af(x) \), SF \(a \).
4. Reflexion on the x–axis \(y = f(-x) \).
Summary of Transformations

We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
2. Horizontal Translation (in the x–direction) $y = f(x \pm c)$.
3. Dilation on the y–axis $y = af(x)$, SF a.
4. Reflexion on the x–axis $y = -f(x)$.
5. Reflexion on the y–axis $y = f(-x)$.
We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
2. Horizontal Translation (in the x–direction) $y = f(x \pm c)$.
3. Dilation on the y–axis $y = af(x)$, SF a.
4. Reflexion on the x–axis $y = -f(x)$.
5. Reflexion on the y–axis $y = f(-x)$.
6. Dilation on the x–axis $y = f(bx)$, SF $1/b$.
We have seen six kinds of Transformations:

1. Vertical Translation (in the y–direction) $y = f(x) \pm d$.
2. Horizontal Translation (in the x–direction) $y = f(x \pm c)$.
3. Dilation on the y–axis $y = af(x)$, SF a.
4. Reflexion on the x–axis $y = -f(x)$.
5. Reflexion on the y–axis $y = f(-x)$.
6. Dilation on the x–axis $y = f(bx)$, SF $1/b$.

$$y = -af(-bx \pm c) \pm d$$
Basic Examples for Transformations

Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]
Basic Examples for Transformations

Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{x \pm 2} \]
Basic Examples for Transformations

Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{x \pm 2} \]

\[y = \sqrt{x} \quad \rightarrow \quad y = 0.5 \sqrt{x} \]
Basic Examples for Transformations

Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{(x \pm 2)} \]

\[y = \sqrt{x} \quad \rightarrow \quad y = 0.5\sqrt{x} \]

\[y = x^3 \quad \rightarrow \quad y = -x^3 \]
Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{(x \pm 2)} \]

\[y = \sqrt{x} \quad \rightarrow \quad y = 0.5\sqrt{x} \]

\[y = x^3 \quad \rightarrow \quad y = -x^3 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{-x} \]
Basic Examples for Transformations

Note the changes in domain and range!

\[y = x^2 \quad \rightarrow \quad y = x^2 \pm 2 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{(x \pm 2)} \]

\[y = \sqrt{x} \quad \rightarrow \quad y = 0.5\sqrt{x} \]

\[y = x^3 \quad \rightarrow \quad y = -x^3 \]

\[y = \sqrt{x} \quad \rightarrow \quad y = \sqrt{-x} \]

\[y = \sin(x) \quad \rightarrow \quad y = \sin(2x) \]
Transformations are the first kind of function compositions we learned. Consider:

\[f(s) = s^2, \]
Transformations are the first kind of function compositions we learned. Consider:

\[f(s) = s^2, \]
where \(s = g(x) = x + 1 \)
3.4 Function Composition

Transformations are the first kind of function compositions we learned.
Consider:

\[f(s) = s^2, \]

where \(s = g(x) = x + 1 \)

\[\iff f(g(x)) = f(x + 1) = (x + 1)^2 \]
Transformations are the first kind of function compositions we learned.
Consider:

\[f(s) = s^2, \]
where \(s = g(x) = x + 1 \)

\[\iff f(g(x)) = f(x + 1) = (x + 1)^2 \]

Notation:

\[f \circ g(x) = f(g(x)). \]
Domain and Range of composed functions

- **Input for Domain of**
 - Domain of $g(x)$

- **Output of Range of**
 - Range of $f(s)$
Domain and Range of composed functions

\[g(x) \]

- Input for Domain of \(g(x) \)
- Output of Range of \(g(x) \)
- Input for Domain of \(f(s) \)
Domain and Range of composed functions

- **Input for Domain of** $g(x)$
- **Output of Range of** $g(x)$
- **Input for Domain of** $f(s)$
- **Output of Range of** $f(s)$
Examples

Draw the following functions and determine their domain and range:

\[f(s) = s + 1, \quad \text{where } s = g(x) = x^2 \] \hspace{1cm} (1)

\[f(s) = \sqrt{s}, \quad \text{where } s = g(x) = -x \] \hspace{1cm} (2)

\[f(s) = \frac{1}{s}, \quad \text{where } s = g(x) = \sqrt{x} \] \hspace{1cm} (3)

\[f(s) = \sqrt{s}, \quad \text{where } s = g(x) = x^2 \] \hspace{1cm} (4)