4. Indices and Logarithm
4.2 Exponential Functions

Consider

\[f(x) = a \times b^x. \]

Such functions are called exponential functions, where

- \(a \) is a coefficient.
- \(b \) is the base.
- and the variable \(x \) is an exponent.
Some characteristics of exponential functions $f(x) = b^x$:

- b has to be > 0.
- $f(x)$ will intersect the y–axis at 1 for $x = 0$.
- for $b > 1$: $f(x)$ increases for x increasing.
- for $b < 1$: $f(x)$ decreases for x increasing.
- Domain $D_f = (-\infty, \infty)$.
- Range $R_f = (0, \infty)$.
- Indices laws can be used for calculations involving several exponential functions.
Examples:

\[f(x) = 2^x \] \hspace{1cm} (1)

\[f(x) = e^x \] \hspace{1cm} (2)

\[f(x) = 10^x \] \hspace{1cm} (3)

\[f(x) = (e^x)^2 \] \hspace{1cm} (4)

\[f(x) = e^x \times e^{-x} \] \hspace{1cm} (5)

\[f(x) = e^x \times e^{3x} \] \hspace{1cm} (6)

\[f(x) = e^x \times e^{3x} \] \hspace{1cm} (7)
4.2 Logarithmic function

Consider the inverse function of an exponential function:

\[f(x) \]

\[f^{-1}(x) \]
The inverse function of an exponential function is called:

THE LOGARITHMIC FUNCTION.
The inverse function of an exponential function is called:

THE LOGARITHMIC FUNCTION.

Consider $f(x) = b^x$.
The inverse function of an exponential function is called:

THE LOGARITHMIC FUNCTION.

Consider \(f(x) = b^x \).
\(f^{-1}(x) = \log_b(x) \).
The inverse function of an exponential function is called:

THE LOGARITHMIC FUNCTION.

Consider \(f(x) = b^x \).

\[f^{-1}(x) = \log_b(x). \]

We say: The logarithm of \(x \) to base \(b \).
The inverse function of an exponential function is called:

THE LOGARITHMIC FUNCTION.

Consider \(f(x) = b^x \).
\[
f^{-1}(x) = \log_b(x).
\]
We say: The logarithm of \(x \) to base \(b \).

It follows that

\[
f^{-1} \circ f(x) = f^{-1}(b^x) = \log_b(b^x) = x
\]