1. Prove Fermat’s Little Theorem for $p = 2, 3$ and 5 using congruences.

Solution.

- For any integer a, a is congruent to either 0 or 1 modulo 2. So, (noting that a^{p-1} is just a) ...

 if $a \neq 0 \pmod{2}$ then $a^{p-1} \equiv 1 \pmod{2}$.

- Modulo 3, a not congruent to 0 implies a is congruent to either 1 or 2, whence either $a - 1$ or $a + 1$ is congruent to 0. Thus, if $a \neq 0 \pmod{3}$ then

 $$a^2 - 1 = (a - 1)(a + 1) \equiv 0 \pmod{3}$$

 i.e. $a^{3-1} \equiv 1 \pmod{3}$.

- Modulo 5, a not congruent to 0 implies a is congruent to one of $-2, -1, 1$ or 2, whence one of $a + 2, a + 1, a - 1$ or $a - 2$ is congruent to 0. Thus, if $a \neq 0 \pmod{5}$ then

 $$0 \equiv (a + 1)(a - 1)(a + 2)(a - 2) \pmod{5}$$

 $$\equiv (a^2 - 1)(a^2 - 4) \pmod{5}$$

 $$\equiv (a^2 - 1)(a^2 + 1) \pmod{5}$$

 $$\equiv a^4 - 1 \pmod{5}$$

 i.e. $a^{5-1} \equiv 1 \pmod{5}$.

So Fermat’s Little Theorem is true for $p = 2, 3$ and 5.

2. Show Euclid’s Lemma is false if p is not prime.

Solution. Removing the condition that p be prime in Euclid’s Lemma, gives the statement:

If $p | ab$ then $p | a$ or $p | b$.

To show this statement is false, we need only exhibit one counterexample, e.g.

Take $p = 4, a = 2, b = 6$. Then $4 \nmid 12 = 2.6$, but $4 \nmid 2$ and $4 \nmid 6$.

So Euclid’s Lemma is false if the condition that p be prime is removed.
3. For which \(a \) does the congruence \(ax \equiv 1 \pmod{m} \) have a solution, when …

(i) \(m = 4 \)
(ii) \(m = 5 \)
(iii) \(m = 6 \)
(iv) \(m = 7 \)

Solution. The congruence \(ax \equiv 1 \pmod{m} \) is equivalent to saying that

\[
ax + my = 1 \quad (1)
\]

for some integer \(y \). In Problem 16 of the Number Theory I Problem Sheet, we showed that if such a condition was satisfied then \(a, m \) are coprime. Conversely, the Euclidean Algorithm guarantees a solution of (1). Thus, in each case the problem is equivalent to finding integers \(a \) that are coprime with \(m \). Note that, if \((a_1, m) = 1 \) and \(0 < a_1 < m \) then any \(a \equiv a_1 \pmod{m} \) also satisfies \((a, m) \). So we will only list below those \(a \) that are coprime with \(m \) and satisfy \(0 < a < m \). (Observe \(a \) cannot be \(0 \), since \((0, m) = m \).)

(i) For \(m = 4 \), if \(a \in \{1, 3\} \) then \(a, m \) are coprime. (If \(a = 1 \) (respectively \(a = 3 \)) then \(x = 1 \) (respectively \(x = 3 \)) is a solution of \(ax \equiv 1 \pmod{4} \).)

(ii) Since \(m = 5 \) is prime, for \(a \in \{1, 2, 3, 4\} \) we have \(a, m \) are coprime. (Possibilities for \(x \) are 1, 3, 2, 4 respectively. For each \(a \) there is an infinite number of possibilities for \(x \) but all the possibilities are congruent modulo \(m \).)

(iii) For \(m = 6 \), if \(a \in \{1, 5\} \) then \(a, m \) are coprime. (Possibilities for \(x \) are 1, 5 respectively.)

(iv) Since \(m = 7 \) is prime, for \(a \in \{1, 2, 3, 4, 5, 6\} \) we have \(a, m \) are coprime. (Possibilities for \(x \) are 1, 4, 5, 2, 3, 6 respectively.)

4. Solve \(58x \equiv 1 \pmod{127} \).

[Hint. Use the Euclidean Algorithm as one of your steps.]

Solution. Observe that \(58x \equiv 1 \pmod{127} \) is equivalent to saying that

\[
58x + 127y = 1 \quad (2)
\]

for some integer \(y \), i.e. a solution exists if and only if 58 and 127 are coprime (see discussion in previous question solution). Thus using the Euclidean Algorithm:

\[
\begin{array}{c|ccc}
5 & 58 & 127 \\
3 & 55 & 116 & 2 \\
3 & 11 & 12 & 4 \\
3 & 4 & -1 & 4
\end{array}
\]

Thus

\[
-1 = 11 - 4.3 \\
= 11 - 4.(58 - 5.11) \\
= 21.11 - 4.58 \\
= 21.(127 - 2.58) - 4.58 \\
= 21.127 - 46.58 \\
So \ldots 1 = -21.127 + 46.58
\]
Hence, by the Theorem of the notes, (2) has general solution

\[x = 46 + 127t \]
\[y = -21 - 58t \]

i.e. \(x \equiv 46 \pmod{127} \).

5. Show \(7 \mid 2222^{5555} + 5555^{2222} \).

Solution. By Fermat’s Little Theorem, with \(p = 7 \) we have:

If \(n \) is a natural number and \(n \not\equiv 0 \pmod{7} \) then \(n^6 \equiv 1 \pmod{7} \).

So for natural numbers \(n, q \) and \(r \), if \(n \not\equiv 0 \pmod{7} \) then

\[n^{6q+r} \equiv (n^6)^q \cdot n^r \pmod{7} \]
\[\equiv 1^q \cdot n^r \pmod{7} \]
\[\equiv n^r \pmod{7} \]

In other words, if \(n \not\equiv 0 \pmod{7} \) then we can reduce the power of \(n \) modulo 6. We use this twice in the second line of our reduction below.

\[2222^{5555} + 5555^{2222} \equiv 3^{5555} + (-3)^{2222} \pmod{7} \]
\[\equiv 3^5 + (-3)^2 \pmod{7} \]
\[\equiv 3^2(3^3 + 1) \pmod{7} \]
\[\equiv 3^2 \cdot 28 \pmod{7} \]
\[\equiv 0 \pmod{7} \]

Hence \(7 \mid 2222^{5555} + 5555^{2222} \).

6. If \(n^2 + n + 41 \) is evaluated for every integer \(n \) in \(\{1, 2, 3, 4, \ldots, 39\} \) we have a list of primes. Check this for a few values of \(n \). Is \(n^2 + n + 41 \) prime for every natural number \(n \)?

Solution. No, \(n^2 + n + 41 \) is not prime for every natural number \(n \). Clearly, whenever \(n \) is a multiple of 41, we have \(41 \mid n^2 + n + 41 \). A similar argument shows that no polynomial in \(n \) with integer coefficients exists that gives a prime for each natural number \(n \) . . . multiples of the constant term of the polynomial will always yield counter-example values for \(n \). The values of \(n^2 + n + 41 \) for \(n \in \{1, 2, 3, 4, \ldots, 39\} \) are:

\[43, \ 47, \ 53, \ 61, \ 71, \ 83, \ 97, \ 113, \ 131, \ 151, \ 173, \ 197, \ 223, \ 251, \ 281, \ 313, \ 347, \ 383, \ 421, \ 461, \ 503, \ 547, \ 593, \ 641, \ 691, \ 743, \ 797, \ 853, \ 911, \ 971, \ 1033, \ 1097, \ 1163, \ 1231, \ 1301, \ 1373, \ 1447, \ 1523, \ 1601. \]

It is an interesting coincidence that these numbers are all prime.

7. Is 167 prime?

Solution. Suppose 167 is composite. Then it has a divisor \(m > 1 \). Then \(m \) and \(167/m \) both divide 167. The lesser of \(m \) and \(167/m \) is at most \(\sqrt{167} \) and must have a prime decomposition consisting of primes less than or equal to \(\sqrt{167} \). Now \(\sqrt{167} < 13 \) and it is easy to check that none of the primes 2, 3, 5, 7 or 11 divide 167. So we have a contradiction. That is, 167 cannot be composite; and since it is not 1 it must be prime.
8. Obtain a complete list of primes less than 1000.

[Hint. There are 168 of them!]

Answer. Using the **Sieve of Eratosthenes**, the primes less than 1000 are:

If you avoided this problem because you thought it would take too long, note that \(32^2 > 1000\); so … once you have boxed 31 (the 11\(^{th}\) prime) all remaining numbers not crossed out must be prime. (So you only need to run through the algorithm 11 times.)

9. Find the values of \(p, q, k\) for Example 6.

Solution. From the RSA Theorem we know that \(n, p, q, k, d, e\) satisfy

\[
p, q \text{ are distinct primes,} \quad n = pq,
\]

\[
k = (p - 1)(q - 1),
\]

\[
(d, k) = 1 \text{ and } \quad de \equiv 1 \pmod k.
\]

In particular,

\[
k = (p - 1)(q - 1)
\]

\[
= pq - p - q + 1
\]

\[
= n - (p + q) + 1.
\]

Without loss of generality, assume \(p < q\). Then \(2 \leq p < \sqrt{n}\) and so \(n/2 - 1 \leq k < n - 2\sqrt{n} + 1\).

Also the possibilities for \(de\) are: \(1, k + 1, 2k + 1, \ldots\). Since \(de = 157.17 = 2669\) is both greater than \(n/2 - 1\) and less than \(n\) we see that the only possibility is: \(de = k + 1\). So \(k = de - 1 = 2668\). Thus:

\[
p + q = n - k + 1
\]

\[
= 2773 - 2668 + 1 = 106.
\]

So we have:

\[
p + q = 106
\]

\[
pq = 2773.
\]

Observe that

\[
(x - p)(x - q) = x^2 - (p + q)x + pq,
\]

4
and so \(p, q \) are the solutions of the following quadratic equation
\[
x^2 - 106x + 2773 = 0
\]
i.e.
\[
p, q = \frac{106 \pm \sqrt{106^2 - 4 \cdot 2773}}{2}
\]
\[
= 53 \pm \sqrt{53^2 - 2773}
\]
\[
= 53 \pm 6
\]
\[
= 47, 59.
\]
So \(p = 47, q = 59, k = 2668 \). (Remember, we assumed \(p < q \). Of course, \(p = 59, q = 47 \) would also have been a correct solution.)

10. Use \(e = 3 \) and \(n = 2773 \) to encode the messages using the RSA cryptosystem:

(i) CODING IS EASY
(ii) THE HUNS ARE COMING

Use 2-letter blocks and don’t omit spaces.

Solution.

(i) First we numerically encode the letters of the message as per the table on page 8 of the notes:

<table>
<thead>
<tr>
<th>CODING IS EASY</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 15 04 09 14 07 00 09 19 00 05 01 19 25</td>
</tr>
</tbody>
</table>

Now we encode each block \(a \) with \(b \) according to the algorithm: \(b = a^e \mod n \).

This gives us the encoding:

\[
\begin{align*}
1392 & \quad 2473 & \quad 1336 & \quad 0729 & \quad 1138 & \quad 1497 & \quad 1919 \\
\end{align*}
\]

As an example, the first block of the encoding was obtained as follows

\[
315^3 = 315^2 \cdot 315 = 99225.315 \\
\equiv 2173.315 \mod 2773 \\
\equiv 1392 \mod 2773
\]

Thus the RSA encoding of the message is: 1392247313360729113814971919.

(ii) First we numerically encode the letters of the message as per the table on page 8 of the notes:

<table>
<thead>
<tr>
<th>THE HUNS ARE COMING</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 08 05 00 08 21 14 19 00 01 18 05 00 03 15 13 09 14 07 00</td>
</tr>
</tbody>
</table>

Now we encode each block \(a \) with \(b \) according to the algorithm: \(b = a^e \mod n \).

This gives us the encoding:

\[
\begin{align*}
0952 & \quad 1479 & \quad 2235 & \quad 2092 & \quad 0001 & \quad 0749 & \quad 0027 & \quad 2421 & \quad 0848 & \quad 2084 \\
\end{align*}
\]

As an example, the first block of the encoding was obtained as follows

\[
2008^3 = 2008^2 \cdot 2008 = 4032064.2008 \\
\equiv 122.2008 \mod 2773 \\
\equiv 952 \mod 2773
\]

Thus the RSA encoding of the message is: 0952147922352092000107490027242108482084.
11. Find the decoding algorithm for the previous exercise.

Solution. Let us suppose we don’t have available to us the results of Problem 8 of the non-homework set. From the RSA theorem we know that \(n = pq \), where \(p, q \) are distinct primes. Without loss of generality, take \(p < q \). Then \(p < \sqrt{2773} < 53 \). So we need to check \(n = 2773 \) for divisibility by each of 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47 (there’s no shorter way); except that, of course, you might guess that \(p, q \) must surely be “close” to \(\sqrt{2773} \) and thus find \(p = 47 \) and \(q = 59 \) straight away. Hence, the parameter \(k \) of the RSA Theorem is:

\[
k = (p - 1)(q - 1) = 46.58 = 2668.
\]

Now, the parameter \(d \) satisfies: \(de \equiv 1 \pmod{k} \). Using the method of Problem 5, we apply the *Euclidean Algorithm* to \(e = 3 \) and \(k = 2668 \).

\[
\begin{array}{c|c|c}
3 & 2668 & 889 \\
- & 2667 & 1 \\
\end{array}
\]

Thus

\[
1 = 2668 - 889.3 \\
\equiv -889.3 \pmod{2668} \\
\equiv 1779.3 \pmod{2668}
\]

So we may take \(d = 1779 \), i.e. the *decoding algorithm* is: \(a = b^{1779} \pmod{2773} \), where \(b \) is a 4-digit block of the encoded message and \(a \) is the corresponding decoded block, which we recognise as a pair of two-digit numbers which in turn represent letters according to the table on page 8 of the notes.

Now, 1779 is quite large, so \(b^{1779} \) is well-nigh impossible to work out. This seems to suggest that the *decoding algorithm* is impractical ... but remember we are working *modulo* 2773. Observing that

\[
11011110011
\]

is the *binary* (i.e. *base two*) representation of 1779, write

\[
b^{1779} = b_3 b_2 b_1 b_0 = b^{32} b^{64} b^{128} b^{256} b^{1024} b^{2048}
\]

where

\[
\begin{align*}
b^{32} &= (((b^2)^2)^2)^2 \\
b^{64} &= (b^{32})^2 \\
b^{128} &= (b^{64})^2 \\
b^{256} &= (b^{128})^2 \\
b^{1024} &= ((b^{256})^2)^2 \\
b^{2048} &= (b^{1024})^2
\end{align*}
\]

Each time we square or calculate a product we reduce *modulo* 2773. We need to perform 12 squaring operations and 7 product operations to calculate \(b^{1779} \) for any \(b \). We can write a computer program to do this in the twinkle of an eye and what’s more no intermediate calculation involves a number of greater than 7 digits.