1. Obtain a complete list of primes less than 1000.

[Hint. There are 168 of them!]

Answer. Using the Sieve of Eratosthenes, the primes less than 1000 are:

If you avoided this problem because you thought it would take too long, note that $32^2 > 1000$; so ... once you have boxed 31 (the 11th prime) all remaining numbers not crossed out must be prime. (So you only need to run through the algorithm 11 times.)

2. Show $7|2222^{5555} + 5555^{2222}$.

Solution. By Fermat’s Little Theorem, with $p = 7$ we have:

If n is a natural number and $n \not\equiv 0 \pmod 7$ then $n^6 \equiv 1 \pmod 7$.

So for natural numbers n, q and r, if $n \not\equiv 0 \pmod 7$ then

$$n^{6q+r} \equiv (n^6)^q \cdot n^r \pmod 7$$
$$\equiv 1^q \cdot n^r \pmod 7$$
$$\equiv n^r \pmod 7.$$

In other words, if $n \not\equiv 0 \pmod 7$ then we can reduce the power of n modulo 6. We use this twice in the second line of our reduction below.

$$2222^{5555} + 5555^{2222} \equiv 3^{5555} + (-3)^{2222} \pmod 7$$
$$\equiv 3^5 + (-3)^2 \pmod 7 \quad \text{since} \quad \pm 3 \not\equiv 0 \pmod 7$$
$$\equiv 3^2 (3^3 + 1) \pmod 7$$
$$\equiv 3^2 \cdot 28 \pmod 7$$
$$\equiv 0 \pmod 7.$$

Hence $7|2222^{5555} + 5555^{2222}$.
3. Show Euclid’s Lemma is false if \(p \) is not prime.

Solution. Removing the condition that \(p \) be prime in Euclid’s Lemma, gives the statement:
If \(p \mid ab \) then \(p \mid a \) or \(p \mid b \).
To show this statement is false, we need only exhibit one counterexample, e.g.
Take \(p = 4 \), \(a = 2 \), \(b = 6 \). Then \(4 \mid 12 = 2 \cdot 6 \), but \(4 \nmid 2 \) and \(4 \nmid 6 \).
So Euclid’s Lemma is false if the condition that \(p \) be prime is removed.

4. For which \(a \) does the congruence \(ax \equiv 1 \pmod{m} \) have a solution, when \(\ldots \)

(i) \(m = 4? \)
(ii) \(m = 5? \)
(iii) \(m = 6? \)
(iv) \(m = 7? \)

Solution. The congruence \(ax \equiv 1 \pmod{m} \) is equivalent to saying that
\[
ax + my = 1 \tag{1}
\]
for some integer \(y \). In Problem 16 of the Number Theory I Problem Sheet, we showed that if such a condition was satisfied then \(a, m \) are coprime. Conversely, the Euclidean Algorithm guarantees a solution of (1). Thus, in each case the problem is equivalent to finding integers \(a \) that are coprime with \(m \). Note that, if \((a_1, m) = 1 \) and \(0 < a_1 < m \) then any \(a \equiv a_1 \pmod{m} \) also satisfies \((a, m) \). So we will only list below those \(a \) that are coprime with \(m \) and satisfy \(0 < a < m \). (Observe \(a \) cannot be 0, since \((0, m) = m \).)

\[\blacklozenge \]

\[\begin{align*}
(i) & \text{ For } m = 4, \text{ if } a \in \{1, 3\} \text{ then } a, m \text{ are coprime. (If } a = 1 \text{ (respectively } a = 3) \text{ then } x = 1 \text{ (respectively } x = 3) \text{ is a solution of } ax \equiv 1 \pmod{4}. \\
(ii) & \text{ Since } m = 5 \text{ is prime, for } a \in \{1, 2, 3, 4\} \text{ we have } a, m \text{ are coprime. (Possibilities for } x \text{ are } 1, 3, 2, 4 \text{ respectively. For each } a \text{ there are an infinite number of possibilities for } x \text{ but all the possibilities are congruent modulo } m. \\
(iii) & \text{ For } m = 6, \text{ if } a \in \{1, 5\} \text{ then } a, m \text{ are coprime. (Possibilities for } x \text{ are } 1, 5 \text{ respectively.)} \\
(iv) & \text{ Since } m = 7 \text{ is prime, for } a \in \{1, 2, 3, 4, 5, 6\} \text{ we have } a, m \text{ are coprime. (Possibilities for } x \text{ are } 1, 4, 5, 2, 3, 6 \text{ respectively.)}
\end{align*} \]

5. Solve \(58x \equiv 1 \pmod{127} \).

[Hint. Use the Euclidean Algorithm as one of your steps.]

Solution. Observe that \(58x \equiv 1 \pmod{127} \) is equivalent to saying that
\[
58x + 127y = 1 \tag{2}
\]
for some integer \(y \), i.e. a solution exists if and only if 58 and 127 are coprime (see discussion in previous question solution). Thus using the Euclidean Algorithm:

\[
\begin{array}{c|cc}
5 & 58 & 127 \\
 & 55 & 116 \\
3 & 11 & 12 \\
 & 4 & -1
\end{array}
\]
Thus

\[-1 = 11 - 4.3\]
\[= 11 - 4(58 - 5.11)\]
\[= 21.11 - 4.58\]
\[= 21(127 - 2.58) - 4.58\]
\[= 21.127 - 46.58\]

So \(1 = -21.127 + 46.58\)

Hence, by the Theorem of the Number I notes, (2) has general solution

\[x = 46 + 127t\]
\[y = -21 - 58t\]

i.e. \(x \equiv 46 \pmod{127}\).

6. Using the Caesar cipher, with \(a, b, m\) as defined in the dangerous bend on page 2 of the notes, encode: CRYPTOLOGY.

Answer. With \(a = 1, b = 3\) and \(m = 27\), the Caesar cipher amounts to being a cyclic shift of each letter by three letters. Hence CRYPTOLOGY is encoded as:

FUASWRORJA

*7. Decode the following message. Spaces are also encoded. There is one space in the encoded output.

RUOELTWK EINHXFEQHZYEYTDJPEHVONERUOEBGCAEMHS

(See additional comments and hint in first homework problem.)

Solution. First observe that the letters occurring in the message have the following frequencies:

\[
E: 8; \quad H: 4; \quad O: 3; \quad N, R, T, U: 2;
\]
\[
\]

where \(\#\) represents a (SPACE). Since \(E\) also occurs in the message every 4–5 letters or so we can be fairly confident that \(E\) encodes a (SPACE). Then RUO is a three letter word that occurs twice and in particular it comes at the beginning of the message. More than likely RUO encodes THE. Also we are given that a Caesar cipher has been used where each letter with numeric encoding \(u\) is encoded as the letter with numeric encoding \(v\) according to

\[v \equiv au + b \pmod{27},\]

for some \(a, b\) such that \((a, 27) = 1\). Since \((a, 27) = 1\), there exists an integer \(c\) such that \(ca \equiv 1 \pmod{27}\) (see the solutions of questions 4. and 5.), and for such a choice of \(c\) we have

\[cv \equiv cau + cb \pmod{27}\]
\[u \equiv cv - cb \pmod{27}\] rearranging and using \(ca \equiv 1 \pmod{27}\)
\[u \equiv cv + d \pmod{27}\]
where \(d = -cb\). This is the decoding rule. Now we use our guesses (beside each letter is its corresponding numeric encoding):

\[
\begin{align*}
&\leftrightarrow 0 & \text{encodes as} & E &\leftrightarrow 5 \\
 T &\leftrightarrow 20 & \text{encodes as} & R &\leftrightarrow 18 \\
 H &\leftrightarrow 8 & \text{encodes as} & U &\leftrightarrow 21 \\
 E &\leftrightarrow 5 & \text{encodes as} & O &\leftrightarrow 15
\end{align*}
\]

The first two of our guesses give:

\[
\begin{align*}
0 &\equiv 5 + d \pmod{27} & (3) \\
20 &\equiv 18 + d \pmod{27} & (4)
\end{align*}
\]

Subtracting (3) from (4) (to eliminate \(d\)) we obtain:

\[
20 \equiv 13 \pmod{27} & (5)
\]

Observe that \(13.2 = 26 \equiv -1 \pmod{27}\). So multiplying (5) throughout by 2 we obtain:

\[
\begin{align*}
40 &\equiv 26.c \pmod{27} \\
13 &\equiv -1.c \pmod{27}
\end{align*}
\]

So \(c \equiv 14 \pmod{27}\)

Substituting \(c \equiv 14 \pmod{27}\) in (3) gives:

\[
\begin{align*}
d &\equiv -14.5 \equiv 13.5 \pmod{27} \\
&\equiv 65 \pmod{27} \\
&\equiv 11 \pmod{27}
\end{align*}
\]

So our decoding algorithm is:

\[
u \equiv 14v + 11 \pmod{27}
\]

By the way, multiplying the decoding algorithm by 2 and rearranging gives the encoding algorithm:

\[
v \equiv 2u + 5 \pmod{27}
\]

Using the decoding algorithm we obtain the following decoding table:

<table>
<thead>
<tr>
<th>#</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>decoded as</td>
<td>K</td>
<td>Y</td>
<td>L</td>
<td>Z</td>
<td>M</td>
<td>#</td>
<td>N</td>
<td>A</td>
</tr>
<tr>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>decoded as</td>
<td>B</td>
<td>P</td>
<td>C</td>
<td>Q</td>
<td>D</td>
<td>R</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>R</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

Observe that the decoding table does agree with the two guesses we did not use for working it out. (So things are looking good.) Using the table, we get that the message decodes as:

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

and since this is a perfectly sensible English sentence it would seem we have cracked the code.
8. Find the values of p, q, k for Example 2 ($n = 2773$, $d = 157$ and $e = 17$).

Solution. From the RSA Theorem we know that n, p, q, k, d, e satisfy

$$p, q \text{ are distinct primes,}$$
$$n = pq,$$
$$k = (p - 1)(q - 1),$$
$$(d, k) = 1 \text{ and}$$
$$de \equiv 1 \pmod{k}.$$

In particular,

$$k = (p - 1)(q - 1)$$
$$= pq - p - q + 1$$
$$= n - (p + q) + 1.$$

Without loss of generality, assume $p < q$. Then $2 \leq p < \sqrt{n}$ and so $n/2 - 1 \leq k < n - 2\sqrt{n} + 1$. Also the possibilities for de are: $1, k + 1, 2k + 1, \ldots$. Since $de = 157.17 = 2669$ is both greater than $n/2 - 1$ and less than n we see that the only possibility is: $de = k + 1$. So $k = de - 1 = 2668$. Thus:

$$p + q = n - k + 1$$
$$= 2773 - 2668 + 1 = 106.$$

So we have:

$$p + q = 106$$
$$pq = 2773.$$

Observe that

$$(x - p)(x - q) = x^2 - (p + q)x + pq,$$

and so p, q are the solutions of the following quadratic equation

$$x^2 - 106x + 2773 = 0$$

i.e.

$$p, q = \frac{106 \pm \sqrt{106^2 - 4.1.2773}}{2}$$
$$= 53 \pm \sqrt{53^2 - 2773}$$
$$= 53 \pm 6$$
$$= 47, 59.$$

So $p = 47, q = 59, k = 2668$. (Remember, we assumed $p < q$. Of course, $p = 59, q = 47$ would also have been a correct solution.)
9. Use \(e = 3 \) and \(n = 2773 \) to encode the following message using the RSA cryptosystem:

CODING IS EASY

Use 2-letter blocks and don’t omit spaces.

Solution.
- First we numerically encode the letters of the message as per the table on page 1 of the Number Theory III notes:

<table>
<thead>
<tr>
<th>C</th>
<th>O</th>
<th>D</th>
<th>I</th>
<th>N</th>
<th>G</th>
<th>#</th>
<th>I</th>
<th>S</th>
<th>#</th>
<th>E</th>
<th>A</th>
<th>S</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>15</td>
<td>04</td>
<td>09</td>
<td>14</td>
<td>07</td>
<td>00</td>
<td>09</td>
<td>19</td>
<td>00</td>
<td>05</td>
<td>01</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Now we encode each block \(a \) with \(b \) according to the algorithm: \(b = a^e \mod n \). This gives us the encoding:

\[\begin{align*}
1392 & \quad 2473 & \quad 1336 & \quad 0729 & \quad 1138 & \quad 1497 & \quad 1919 \\
\end{align*} \]

As an example, the first block of the encoding was obtained as follows

\[\begin{align*}
315^3 & = 315^2 \cdot 315 = 99225 \cdot 315 \\
& \equiv 2173.315 \pmod{2773} \\
& \equiv 1392 \pmod{2773} \\
\end{align*} \]

Thus the RSA encoding of the message is: 1392247313360729113814971919.

Homework exercises.

*1. Decode the following message. Spaces are also encoded. (It just so happens that no spaces appear after the encoding.)

\[
\text{BKDAKUNFKDWTDBJKNWKFNANTTNLKWNTKBKIDS} \\
\text{CKMCCUKYCMFCTJDYKDUJKBKHNCSCKFNJDY}
\]

Note that a Caesar cipher has been used (i.e. \langle \text{SPACE} \rangle, A, \ldots, Z are encoded as 00, 01, \ldots, 26 (as per the table on page 1 of the notes), the Caesar cipher algorithm

\[v \equiv au + b \pmod{27} \]

has been applied for each letter \(u \) of the message for some \(a, b \) (which you essentially have to find), and the encoded letter \(v \) has been changed back to a letter using the table on page 1 of the notes again.)

Note: Letters and spaces occurring in English text, arranged approximately in order of highest frequency to lowest frequency are

\[\langle \text{SPACE} \rangle, E, T, A, I, O, N, S, H, R, D, L, U, \ldots \]

Also, use the fact that inter-word spaces occur on average every 4–5 letters and use what you know about the possibilities of letters in short words of 1, 2 or 3 letters.

If this problem seems too hard, try doing it without using the fact that a Caesar cipher has been used.

Hint. Since you want to decode you really want to express \(u \) in terms of \(v \), i.e. you really want to find a \(c, d \) such that

\[u \equiv cv + d \pmod{27}. \]
Solution. First observe that the letters occurring in the message have the following frequencies:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>14</td>
</tr>
<tr>
<td>N</td>
<td>8</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>F, B, J</td>
<td>4</td>
</tr>
<tr>
<td>U, Y, W</td>
<td>3</td>
</tr>
<tr>
<td>M, A, S</td>
<td>2</td>
</tr>
<tr>
<td>H, L, I</td>
<td>1</td>
</tr>
</tbody>
</table>

Since K is the most frequent letter of the encoded message and it also occurs in the message every 4–5 letters or so we can be fairly confident that K encodes a \(\text{SPACE}\). Under this assumption, the message starts with a 1-letter word, followed by a 2-letter word. So we guess that B either represents A or I. If B decodes as A, then we are left with only strange possibilities for the following 2-letter word; so it is more likely that B decodes as I.

Now let’s try to work out which letter decodes as E. In the encoded message we find N and D are the next most frequently occurring letters (after K), but both of these occur at the beginning of a 2-letter word – so it would seem unlikely that either of these letters decodes as E. The next most frequently occurring letter in the encoded message is C – it occurs doubled in one word and at the end of several others; so there is a pretty good chance that C decodes as E.

Our guesses are as follows (beside each letter is its corresponding numeric encoding, as per the table on page 1 of the notes):

<table>
<thead>
<tr>
<th>Letter</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>9</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>11</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

from which we obtain the following congruences:

\[
\begin{align*}
0 & \equiv c + 11 + d \pmod{27} \quad (6) \\
9 & \equiv 2c + d \pmod{27} \quad (7) \\
5 & \equiv 3c + d \pmod{27} \quad (8)
\end{align*}
\]

Subtracting (7) from (5) (to eliminate \(d\)) we obtain:

\[
c \equiv -4 \equiv 23 \pmod{27} \quad (9)
\]

Substituting (9) back in (7) and rearranging we obtain

\[
d \equiv 9 - (-4.2) \equiv 17 \pmod{27}
\]

So our decoding algorithm is:

\[
u \equiv -4v + 17 \pmod{27}
\]

Multiplying the decoding algorithm by \(-7\) and rearranging gives the encoding algorithm:

\[
v \equiv -7u + 11 \pmod{27}
\]

Observe that we did not use (6) at all. If we had subtracted (7) from (6) we would have obtained:

\[
-9 \equiv 9c \pmod{27}
\]

whence by Lemma 2 of the notes,

\[-1 \equiv c \pmod{3},
\]

giving us several possibilities for \(c \mod{27}\), namely: \(c \equiv 2, 5, 8, 11, 14, 17, 20, 23, 26 \pmod{27}\).
Using the decoding algorithm we obtain the following decoding table:

<table>
<thead>
<tr>
<th>#</th>
<th>0</th>
<th>A</th>
<th>1</th>
<th>B</th>
<th>2</th>
<th>C</th>
<th>3</th>
<th>D</th>
<th>4</th>
<th>E</th>
<th>5</th>
<th>F</th>
<th>6</th>
<th>G</th>
<th>7</th>
<th>H</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>17</td>
<td>M</td>
<td>13</td>
<td>I</td>
<td>9</td>
<td>E</td>
<td>5</td>
<td>A</td>
<td>1</td>
<td>X</td>
<td>24</td>
<td>T</td>
<td>20</td>
<td>P</td>
<td>16</td>
<td>L</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>J</td>
<td>10</td>
<td>K</td>
<td>11</td>
<td>L</td>
<td>12</td>
<td>M</td>
<td>13</td>
<td>N</td>
<td>14</td>
<td>O</td>
<td>15</td>
<td>P</td>
<td>16</td>
<td>Q</td>
<td>17</td>
</tr>
<tr>
<td>H</td>
<td>8</td>
<td>D</td>
<td>4</td>
<td>#</td>
<td>0</td>
<td>W</td>
<td>23</td>
<td>S</td>
<td>19</td>
<td>O</td>
<td>15</td>
<td>K</td>
<td>11</td>
<td>G</td>
<td>7</td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>R</td>
<td>18</td>
<td>S</td>
<td>19</td>
<td>T</td>
<td>20</td>
<td>U</td>
<td>21</td>
<td>V</td>
<td>22</td>
<td>W</td>
<td>23</td>
<td>X</td>
<td>24</td>
<td>Y</td>
<td>25</td>
<td>Z</td>
<td>26</td>
</tr>
<tr>
<td>Z</td>
<td>26</td>
<td>V</td>
<td>22</td>
<td>R</td>
<td>18</td>
<td>N</td>
<td>14</td>
<td>J</td>
<td>10</td>
<td>F</td>
<td>6</td>
<td>B</td>
<td>2</td>
<td>Y</td>
<td>25</td>
<td>U</td>
<td>21</td>
</tr>
</tbody>
</table>

Observe that the decoding table does agree with our other guess (K encodes #) that we did not use for working it out. (So things are looking good.) Using the table, we get that the message decodes as:

I AM NOT AFRAID OF TOMORROW FOR I HAVE SEEN YESTERDAY AND I LOVE TODAY

and since this is a perfectly sensible English sentence we can be fairly confident that we have cracked the code.

2. Use $e = 3$ and $n = 2773$ to encode the following message using the RSA cryptosystem:

THE HUNS ARE COMING

Use 2-letter blocks and don’t omit spaces.

Solution.

- First we numerically encode the letters of the message as per the table on page 1 of the Number Theory III notes:

 TH E# HU NS# A R E# C O M I N G#

 20 08 05 00 08 21 14 19 00 01 18 05 00 03 15 13 09 14 07 00

- Now we encode each block a with b according to the algorithm: $b = a^e \mod n$. This gives us the encoding:

 09 52 14 79 22 35 20 92 00 01 07 49 00 27 24 21 08 48 20 84

As an example, the first block of the encoding was obtained as follows

$$2008^3 = 2008^2 \cdot 2008 = 4032064 \cdot 2008 \equiv 122 \cdot 2008 \pmod{2773} \equiv 952 \pmod{2773}$$

Thus the RSA encoding of the message is: 0952147922352092000107490027242108482084.
*3. Find the decoding algorithm for the previous problem.

Solution. Let us suppose we don’t have available to us the results of Problem 8 of the non-homework set. From the RSA theorem we know that \(n = pq \), where \(p, q \) are distinct primes. Without loss of generality, take \(p < q \). Then \(p < \sqrt{2773} < 53 \). So we need to check \(n = 2773 \) for divisibility by each of 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and 47 (there’s no shorter way); except that, of course, you might guess that \(p, q \) must surely be “close” to \(\sqrt{2773} \) and thus find \(p = 47 \) and \(q = 59 \) straight away. Hence, the parameter \(k \) of the RSA Theorem is:

\[
 k = (p - 1)(q - 1) = 46.58 = 2668.
\]

Now, the parameter \(d \) satisfies: \(de \equiv 1 \pmod{k} \). Using the method of Problem 5, we apply the *Euclidean Algorithm* to \(e = 3 \) and \(k = 2668 \).

\[
\begin{array}{c|ccc}
3 & 2668 \\
 & 2667 & 889 \\
 & & 1
\end{array}
\]

Thus

\[
1 = 2668 - 889.3 \\
\equiv -889.3 \pmod{2668} \\
\equiv 1779.3 \pmod{2668}
\]

So we may take \(d = 1779 \), i.e. the *decoding algorithm* is: \(a = b^{1779} \pmod{2773} \), where \(b \) is a 4-digit block of the encoded message and \(a \) is the corresponding decoded block, which we recognise as a pair of two-digit numbers which in turn represent letters according to the table on page 1 of the notes.

\(\heartsuit \) Now, 1779 is quite large, so \(b^{1779} \) is well-nigh impossible to work out. This seems to suggest that the *decoding algorithm* is impractical . . . but remember we are working *modulo* 2773. Observing that

\[
11011110011
\]

is the *binary* (i.e. *base two*) representation of 1779, write

\[
b^{1779} = b.b^{32}.b^{64}.b^{128}.b^{256}.b^{1024}.b^{2048}
\]

where

\[
b^{32} = (((b^2)^2)^2)^2
\]

\[
b^{64} = (b^{32})^2
\]

\[
b^{128} = (b^{64})^2
\]

\[
b^{256} = (b^{128})^2
\]

\[
b^{1024} = ((b^{256})^2)^2
\]

\[
b^{2048} = (b^{1024})^2
\]

Each time we square or calculate a product we reduce *modulo* 2773. We need to perform 12 squaring operations and 7 product operations to calculate \(b^{1779} \) for any \(b \). We can write a computer program to do this in the twinkle of an eye and what’s more no intermediate calculation involves a number of greater than 7 digits.