1. The quadratic equation $x^2 - 3x - 5 = 0$ has roots α, β. Determine $\alpha^2 + \beta^2$ and $\alpha^{-2} + \beta^{-2}$.

2. The quadratic polynomial $x^2 + 4x - 1$ has zeros α, β. Determine $\alpha^3 + \beta^3$ and $\alpha^{-3} + \beta^{-3}$.

\textit{Hint.} $(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha^2\beta + 3\alpha\beta^2 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$.

3. Solve $2 \left(x + \frac{1}{x} \right)^2 - \left(x + \frac{1}{x} \right) = 10$.

4. Use the Remainder and Factor Theorems to factorise

 (i) $x^3 - 2x^2 - 5x + 6$
 (ii) $x^3 - 5x^2 + 3x + 1$

5. The quadratic polynomial $ax^2 + bx - 4$ leaves remainder 12 on division by $x - 1$ and has $x + 2$ as a factor. Find a, b and the zeros of the polynomial.

6. Find a quadratic equation with roots $2 + \sqrt{3}$ and $2 - \sqrt{3}$.

7. June solved a quadratic equation of the form:

 $$ax^2 + bx + c = 0$$

 and got 2 as a root. Kay switched the b and the c and got 3 as a root. What was June’s equation?

8. The equation $x^2 + ax + (b + 2) = 0$ has real roots. What is the least value that $a^2 + b^2$ could be?

9. If a, b are odd integers, prove that the equation

 $$x^2 + 2ax + 2b = 0$$

 has no rational roots.