Local symmetry properties of graphs

Michael Giudici

33rd ACCMCC
Newcastle, December 2009
Automorphisms of graphs

Γ a finite simple connected graph.
Unless otherwise stated, each vertex has valency at least 3.
Vertex set $V\Gamma$, edge set $E\Gamma$.

An automorphism of Γ is a permutation of the vertices which maps edges to edges.

$\text{Aut}(\Gamma)$ is the group of all automorphisms of Γ.
Automorphisms of the Petersen graph

Rotations and reflections gives D_{10}.
Interchange inside with outside.
This gives 20 automorphisms.

$\text{Aut}(\Gamma) = S_5$
Automorphisms of the Petersen graph

Rotations and reflections gives D_{10}. Interchange inside with outside. This gives 20 automorphisms.

$\text{Aut}(\Gamma) = S_5$
Vertex-transitive graphs

Say Γ is **vertex-transitive** if $\text{Aut}(\Gamma)$ acts transitively on $V\Gamma$, that is, for any two vertices v and w there is an automorphism g mapping v to w.

The Petersen graph is vertex-transitive.

Such graphs are regular, for g induces a bijection from $\Gamma(v)$ to $\Gamma(w)$.
The Frucht graph is regular but has trivial automorphism group.
Edge-transitive graphs

Say Γ is edge-transitive if $\text{Aut}(\Gamma)$ acts transitively on $E\Gamma$.

The Petersen graph is edge-transitive.

Suppose that Γ is edge-transitive but not vertex-transitive.

Then each vertex-orbit contains a unique vertex from each edge.

Thus only two orbits of vertices and these are the two biparts.
Folkman graph

Edge-transitive, regular but not vertex-transitive.
We say \(\Gamma \) is **arc-transitive** if \(\text{Aut}(\Gamma) \) acts transitively on the set \(A\Gamma \) of arcs, that is on all ordered pairs of adjacent vertices.

The Petersen graph is arc-transitive.

Arc-transitive implies edge-transitive and vertex-transitive.

Vertex- and edge-transitive but not arc-transitive graphs are called **half-arc-transitive**.

Holt graph
Interaction

vertex-transitive

half-arc-transitive

Arc-transitive

edge-transitive
Coset graphs

• G a group with subgroup H,

• $g \in G \backslash H$ such that $g^2 \in H$.

We can construct the graph $Cos(G, H, HgH)$ with

- vertex set: cosets of H in G
- adjacency: $Hx \sim Hy$ if and only if $xy^{-1} \in HgH$

G acts by right multiplication on vertices and is transitive on $A\Gamma$.

Any arc-transitive graph Γ can be constructed in this way:

• $G = \text{Aut}(\Gamma), H = G_v$

• g an element interchanging v and w, where $\{v, w\} \in E\Gamma$.

Petersen graph: $G = S_5$, $H = G_{\{1,2\}}$ and $g = (13)(24)$.
Coset graphs II

- a group G with subgroups L and R

We can construct the bipartite graph $\text{Cos}(G, L, R)$ with

vertex set: cosets of L in G and cosets of R in G

adjacency: $Lx \sim Ry$ if and only if $Lx \cap Ry \neq \emptyset$

or equivalently, if $xy^{-1} \in LR$

G acts by right multiplication with two orbits on vertices and
transitive on $E\Gamma$.

Any edge-transitive bipartite graph can be constructed in this way:
$G = \text{Aut}(\Gamma)$, $L = G_v$ and $R = G_w$ for some edge $\{v, w\}$.
s-arc transitive graphs

An s-arc in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).
s-arc transitive graphs

An \textit{s-arc} in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).
s-arc transitive graphs

An s-arc in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).

\[\text{Diagram of a graph with 4 vertices and 5 edges.}\]
An \textit{s-arc} in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).
s-arc transitive graphs

An s-arc in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).

\[
\begin{array}{c}
\text{\includegraphics[width=0.3\textwidth]{graph.png}}
\end{array}
\]
An \textit{s-arc} in a graph is an \((s+1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).
s-arc transitive graphs

An s-arc in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).

A graph is s-arc transitive if \(\text{Aut}(\Gamma)\) is transitive on the set of s-arcs.
s-arc transitive graphs

An s-arc in a graph is an \((s + 1)\)-tuple \((v_0, v_1, \ldots, v_s)\) of vertices such that \(v_i \sim v_{i+1}\) and \(v_{i-1} \neq v_{i+1}\).

A graph is s-arc transitive if \(\text{Aut}(\Gamma)\) is transitive on the set of s-arcs.

\(K_4\) is 2-arc transitive but not 3-arc transitive.
Some basic facts

s-arc transitive implies $(s - 1)$-arc transitive.

In particular, s-arc transitive implies arc-transitive and hence vertex-transitive.

If $G \leqslant \text{Aut}(\Gamma)$ such that G acts transitively on s-arcs we say that Γ is (G, s)-arc transitive.
Examples

- Cycles are s-arc transitive for arbitrary s.
- Complete graphs are 2-arc transitive.
- Petersen graph is 3-arc transitive.
- Heawood graph (point-line incidence graph of Fano plane) is 4-arc transitive.
- Tutte-Coxeter graph (point-line incidence graph of the generalised quadrangle $W(3, 2)$) is 5-arc transitive.
Bounds on s

Tutte (1947, 1959): For cubic graphs, $s \leq 5$.

Weiss (1981): For valency at least 3, $s \leq 7$.

Upper bound is met by the generalised hexagons associated with $G_2(q)$ for $q = 3^n$.

These are bipartite, with valency $q + 1$ and $2(q^5 + q^4 + q^3 + q^2 + q + 1)$ vertices.
Local action

Γ is $(G, 2)$-arc transitive if and only if G_v is 2-transitive on $\Gamma(v)$ and G transitive on $V\Gamma$.
Local action

\(\Gamma \) is \((G, 2)\)-arc transitive if and only if \(G_v \) is 2-transitive on \(\Gamma(\nu) \) and \(G \) transitive on \(V\Gamma \).
Γ is \((G, 2)\)-arc transitive if and only if \(G_v\) is 2-transitive on \(\Gamma(v)\) and \(G\) transitive on \(V\Gamma\).
Local action

Γ is \((G, 2)\)-arc transitive if and only if \(G_v\) is 2-transitive on \(\Gamma(\nu)\) and \(G\) transitive on \(V\Gamma\).
Structure of vertex stabiliser

Tutte: For a cubic graph which is s-arc transitive but not $(s + 1)$-arc transitive, $|G_v| = 3.2^{s-1}$.

Djoković and Miller (1980): Determined the possible structures of a vertex stabiliser in cubic case: only 7 possibilities.

Use knowledge of 2-transitive groups to study possible vertex stabilisers.
\mathcal{B} a partition of $V\Gamma$

Quotient graph $\Gamma_\mathcal{B}$:
- vertex set: parts of \mathcal{B}
- adjacency: $B_1 \sim B_2$ if there exists $v_1 \in B_1$ and $v_2 \in B_2$ such that $v_1 \sim v_2$.

Γ is a cover of $\Gamma_\mathcal{B}$ if:
The quotient of a 2-arc transitive graph is not necessarily 2-arc transitive.

Babai (1985): Every finite regular graph has a 2-arc transitive cover.
Instead look at normal quotients, that is, where B is the set of orbits of some normal subgroup N of $G \leq \text{Aut}(\Gamma)$.

Denote by Γ_N.

Theorem (Praeger 1993)

Let Γ be a (G, s)-arc transitive graph and $N \triangleleft G$ with at least three orbits on $V\Gamma$. Then Γ_N is (G, s)-arc transitive. Moreover, Γ is a cover of Γ_N.

So the basic (G, s)-arc transitive graphs to study are those for which all nontrivial normal subgroups of G have at most two orbits.
Quasiprimitive groups

A permutation group is quasiprimitive if every nontrivial normal subgroup is transitive.

Praeger (1993) proved an O’Nan-Scott Theorem for quasiprimitive groups which classifies them into 8 types.

Only 4 are possible for a 2-arc transitive group of automorphisms.

- Twisted Wreath: Baddeley (1993)
- Product Action: Li-Seress (2006+)
- Almost Simple:

Li (2001): 3-arc transitive implies Almost Simple or Product Action.
Bipartite case

Let Γ be a bipartite graph with group G acting transitively on $V\Gamma$. G has an index 2 subgroup G^+ which fixes the two halves setwise. In particular, G cannot be quasiprimitive.

The basic graphs to study are those where every normal subgroup of G has at most two orbits, ie G is biquasiprimitive on vertices.

In fact G^+ may or may not be quasiprimitive on each orbit.

See Alice Devillers’ talk.
Locally s-arc transitive

In the bipartite graph case, the index two subgroup G^+ contains each vertex stabiliser G_v.

In particular, $(G^+)_v = G_v$ and so $(G^+)_v$ acts transitively on the set of all s-arcs starting at v.

We say that Γ is locally (G, s)-arc transitive if for all vertices v, G_v acts transitively on the set of s-arcs starting at v.

- G_v is 2-transitive on $\Gamma(v)$.
- If G is transitive on vertices then Γ is (G, s)-arc-transitive.
- If G is intransitive on vertices then G has two orbits and Γ is bipartite.

eg point-line incidence graph of a projective space
Bounds on s

Stellmacher (1996): $s \leq 9$

Bound attained by classical generalised octagons associated with $^{2}F_{4}(q)$ for $q = 2^n$, n odd.

These have valencies $\{2^n + 1, 2^{2n} + 1\}$.

Main approach of study has been to determine possibilities for $G^{\Gamma(v)}_v$ and $G^{\Gamma(w)}_w$ for some edge $\{v, w\}$ and try to determine $\{G, G_v, G_w\}$.
Global approach

Theorem (Giudici-Li-Praeger (2004))

• Γ a locally (G, s)-arc transitive graph,
• G has two orbits Δ_1, Δ_2 on vertices,
• $N \triangleleft G$.

1. If N intransitive on both Δ_1 and Δ_2 then Γ_N is locally $(G/N, s)$-arc transitive. Moreover, Γ is a cover of Γ_N.
2. If N transitive on Δ_1 and intransitive on Δ_2 then Γ_N is a star.
Basic graphs

There are two types of basic locally \((G, s)\)-arc transitive graphs:

(i) \(G\) acts faithfully and quasiprimitively on both \(\Delta_1\) and \(\Delta_2\).

(ii) \(G\) acts faithfully on both \(\Delta_1\) and \(\Delta_2\) and quasiprimitively on only \(\Delta_1\). (The star case)

Theorem (Giudici-Li-Praeger (2004))

1. In case \((i)\), either
 - the quasiprimitive types of \(G^{\Delta_1}\) and \(G^{\Delta_2}\) are the same and one of 4 possibilities, or
 - one is Simple Diagonal while the other is Product Action.

2. In case \((ii)\) there are only 5 possibilities for the type of \(G^{\Delta_1}\).
The $\{SD, PA\}$ case

All characterised by Giudici-Li-Praeger (2006-07).

Either $s \leq 3$ or the following locally 5-arc transitive example:

$\Gamma = \text{Cos}(G, L, R)$ with

- $G = \text{PSL}(2, 2^m)^{2^m} \rtimes \text{AGL}(1, 2^m)$, $m \geq 2$,
- $L = \{(t, \ldots, t) \mid t \in \text{PSL}(2, 2^m)\} \times \text{AGL}(1, 2^m)$,
- $R = (C_{2^m} \rtimes C_{2^m - 1}) \rtimes \text{AGL}(1, 2^m)$

On the set of cosets of R, G preserves a partition into $(2^m + 1)^{2^m}$ parts.

- valencies $\{2^m + 1, 2^m\}$
- $G_v^{\Gamma(v)} = \text{PSL}(2, 2^m)$, $G_w^{\Gamma(w)} = \text{AGL}(1, 2^m)$

Important place in the Stellmacher/van Bon program.
Distance transitive graphs

Γ is called **distance transitive** if for each i, $\text{Aut}(\Gamma)$ is transitive on the set $\{(v, w) \mid d(v, w) = i\}$.

A graph satisfying these regularity properties is called **distance regular**.

Shrikhande graph
An imprimitive distance transitive graph is either bipartite or antipodal.

In bipartite case, the distance two graph $\Gamma^{(2)}$ has two connected components, each distance-transitive.

In the antipodal case, the antipodal quotient is distance-transitive.
Primitve distance transitive graphs

- can be derived from a Hamming graph, or
- is of Almost Simple or Affine type.

Classification is almost complete.
Locally distance transitive graphs

Say Γ is \textbf{locally distance transitive} if for each vertex v and integer i, $\text{Aut}(\Gamma)_v$ acts transitively on the set of vertices at distance i from v.

- If Γ is vertex-transitive then it is distance transitive.
- If Γ is not vertex-transitive then $\text{Aut}(\Gamma)$ has two orbits on vertices and Γ is bipartite.

The distance parameters for a vertex only depend on the part of the bipartition it belongs to.

eg line-plane incidence graph of a projective space.
If Γ is locally distance transitive and bipartite then $\Gamma^{(2)}$ has two connected components, each of which is distance transitive.

In the nonregular case, at least one is primitive.

So use knowledge of primitive distance transitive graphs.
Locally s-distance transitive and s-distance transitive

Joint work with Alice Devillers, Cai Heng Li, Cheryl Praeger

Γ is called locally (G, s)-distance transitive if $s \leq \text{diam}(\Gamma)$, and for each vertex v and $i \leq s$, G_v acts transitively on $\Gamma_i(v)$.

A (G, s)-distance transitive graph is a locally (G, s)-distance transitive graph such that G is transitive on $V\Gamma$.

If $s \leq \lfloor \frac{g-1}{2} \rfloor$, where g is the length of the shortest cycle, then Γ is (locally) s-distance transitive if and only if Γ is (locally) s-arc transitive.
Quotienting?

In bipartite case, the connected components of \(\Gamma^{(2)} \) have half the diameter of \(\Gamma \).

Paths in \(\Gamma \) may decrease in length in \(\Gamma_N \) and indeed \(\Gamma_N \) may have smaller diameter than \(\Gamma \).
Quotienting

Let $LDT(s)$ be the set of graphs Γ that are locally s'-distance transitive where $s' = \min\{s, \text{diam}(\Gamma)\}$.

Theorem (Devillers-Giudici-Li-Praeger)

Let $s \geq 2$ and let $\Gamma \in LDT(s)$ relative to G and let $N \triangleleft G$ with at least three orbits on vertices. Then one of the following holds:

- $\Gamma = K_{m[b]}$,
- Γ_N is a star,
- $\Gamma_N \in LDT(s)$ relative to G/N and Γ is a cover of Γ_N.

Basic graphs

There are four types of basic locally \((G, s)\)-distance transitive graphs to study:

- \(G\) acts quasiprimatively on \(V\Gamma\);
- \(\Gamma\) is bipartite, \(G\) is biquasiprimitive on \(V\Gamma\) and \(G^+\) acts faithfully on each orbit;
- \(\Gamma\) is bipartite, \(G = G^+\) acts faithfully and quasiprimitively on each orbit;
- \(\Gamma\) is bipartite, \(G = G^+\) acts faithfully on both orbits and quasiprimitively on only one.

These are currently under investigation.